BCG as a game-changer to prevent the infection and severity of COVID-19 pandemic?

Main Article Content

A.R. Sharma
G. Batra
M. Kumar
A. Mishra
R. Singla
A. Singh
R.S. Singh
B. Medhi


BCG, COVID-19, HCW, Revaccination, Immune response, Antigen specific immunity


The impact of COVID-19 is changing with country wise and depend on universal immunization policies. COVID-19 badly affects countries that did not have universal immunization policies or having them only for the selective population of countries (highly prominent population) like Italy, USA, UK, Netherland, etc. Universal immunization of BCG can provide great protection against the COVID-19 infection because the BCG vaccine gives broad protection against respiratory infections. BCG vaccine induces expressions of the gene that are involved in the antiviral innate immune response against viral infections with long-term maintenance of BCG vaccine-induced cellular immunity. COVID-19 cases are reported very much less in the countries with universal BCG vaccination policies such as India, Afghanistan, Nepal, Bhutan, Bangladesh, Israel, Japan, etc. as compared to without BCG implemented countries such as the USA, Italy, Spain, Canada, UK, etc. BCG vaccine provides protection for 50-60 years of immunization, so the elderly population needs to be revaccinated with BCG. Several countries started clinical trials of the BCG vaccine for health care workers and elderly people. BCG can be uses as a prophylactic treatment until the availability of the COVID-19 vaccine.

Abstract 91 | PDF Downloads 103


1. COVID-19 coronavirus pandemic. https://www.worldome (accessed 27 April 2020).

2. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523e34.

3. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020:30154-9,

4. Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect. 2016;92:235e50.

5. Dowell SF, Simmerman JM, Erdman DD, Wu JS, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 2004;39, 652e7.

6. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(Mar (7798)):270-3.

7. Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol. 2005;79(Sep (18)):11892-900.

8. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;(Mar 9).

9. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;22(Aug (105)):93-116.

10. Moorlag SJ, Arts RJ, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(Dec (12)):1473-8.

11. Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med. 2011;8(Mar (3)).

12. Brewer TF, Wilson ME, Nardell EA. BCG immunization: review of past experience, current use, and future prospects. Curr Clin Topics Infect Dis. 1995;15:253-70.

13. Barreto ML, Pereira SM, Ferreira AA. BCG vaccine: efficacy and indications for vaccination and revaccination. J Pediatr (Rio J). 2006;82 Jul (3 Suppl): S45-54.

14. Global tuberculosis control: surveillance, planning, financing. WHO report 2005. Geneva, World Health Organization (WHO/HTM/TB/2005.349).

15. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. JAMA. 1994;271:698-702.

16. Sterne JAC, Rodrigues LC, Guedes IN. Does the efficacy of BCG decline with time since vaccination? Int J Tuberc Lung Dis. 1998;2:200-7.

17. Townsend JG, Aronson JD, Saylor R, Parr I. Tuberculosis control among North American Indians. AmRev Tuberc. 1942;45:41-52.

18. Aronson JD, Aronson CF, Taylor HC. A twenty-year appraisal of BCG vaccination in the control of tuberculosis. Arch Intern Med. 1958;101:881-93.

19. Aronson NE, Santosham M, Comstock GW, Howard RS, Moulton LH, Rhoades ER, et al. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study. Jama. 2004;291(May (17)):2086-91.

20. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv. 2020;(Jan).

21. Venkataraman A, Yusuff M, Liebeschuetz S, Riddell A, Prendergast AJ. Management and outcome of Bacille Calmette-Guérin vaccine adverse reactions. Vaccine. 2015;33(Oct (41)):5470-4.

22. Arts RJ, Moorlag SJ, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(Jan (1)):89-100.

23. Leentjens J, Kox M, Stokman R, Gerretsen J, Diavatopoulos DA, van Crevel R, et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study. J Infect Dis. 2015;212(Dec (12)):1930-8.

24. Spencer JC, Ganguly R, Waldman RH. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin. J Infect Dis. 1977;136(Aug (2)):171-5.

25. Sergerie Y, Rivest S, Boivin G. Tumor necrosis factor- and interleukin-1 play a critical role in the resistance against lethal herpes simplex virus encephalitis. J Infect Dis. 2007;196(Sep (6)):853-60.

26. (accessed 20 April 2020).

27. Covid-19 minigen vaccine. (accessed 20 April 2020).

28. Covid-19 aPAC vaccine. (accessed 20 April 2020).

29. Ad5-nCoV vaccine. (accessed 20 April 2020).

30. bacTRL spike vaccine. (accessed 20 April 2020).

31. mRNA-1273 vaccine. (accessed 20 April 2020).

32. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30(Dec (12)):1210.

33. Pollard C, De Koker S, Saelens X, Vanham G, Grooten J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med. 2013;19(Dec (12)):705-13.

34. Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the last 20 years? Front Immunol. 2017;8(Sep):1134.

35. Moliva JI, Turner J, Torrelles JB. Immune responses to bacillus Calmette---Guérin vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front Immunol. 2017;8(Apr):407.

36. Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426(Mar (6)):1246-64.

37. Bieback K, Lien E, Klagge IM, Avota E, Schneider- Schaulies J, Duprex WP, et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol. 2002;76:8729-36.

38. Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K, Wang C, et al. Rotavirus NSP4 triggers secretion of proinflammatory cytokines from macrophages via Toll-like receptor 2. J Virol. 2013;87:11160-7.

39. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1:398-401.

40. Mogensen TH, Paludan SR. Reading the viral signature by Tolllike receptors and other pattern recognition receptors. J Mol Med (Berl). 2005;83:180-92.

41. Kumar S, Sunagar R, Gosselin EJ. Bacterial protein toll-like receptor agonists: a novel perspective on vaccine adjuvants. Front Immunol. 2019;10:1144.

42. Gagliardi MC, Teloni R, Giannoni F, Pardini M, Sargentini V, Brunori L, et al. Mycobacterium bovis Bacillus Calmette-Guérin infects DC SIGN---dendritic cell and causes the inhibition of IL12 and the enhancement of IL-10 production. J Leukoc Biol. 2005;78(Jul (1)):106-13.

43. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun. 2000;68(Dec (12)):6883-90.

44. Joosten SA, van Meijgaarden KE, Arend SM, Prins C, Oftung F, Korsvold GE, et al. Mycobacterial growth inhibition is associated with trained innate immunity. J Clin Invest. 2018;128(May (5)):1837-51.

45. Bertholet S, Ireton GC, Kahn M, Guderian J, Mohamath R, Stride N, et al. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol. 2008;181(Dec (11)):7948-57.

46. Kaufmann SH. Tuberculosis vaccines: time to think about the next generation. Seminars in immunology, 25. Academic Press; 2013. p. 172-81. Apr 1, No. 2.

47. Bollampalli VP, Yamashiro LH, Feng X, Bierschenk D, Gao Y, Blom H, et al. BCG skin infection triggers IL-1R-MyD88-dependent migration of EpCAMlow CD11bhigh skin dendritic cells to draining lymph node during CD4+ T-cell priming. PLoS Pathog. 2015;11(Oct (10)).

48. Su H, Peng B, Zhang Z, Liu Z, Zhang Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1/Th17 responses during mycobacteria infection. Mol Immunol. 2019;109(May):58-70.

49. Bizzell E, Sia JK, Quezada M, Enriquez A, Georgieva M, Rengarajan J. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses. J Leukoc Biol. 2018;103(Apr (4)):739-48.

50. Humphreys IR, Stewart GR, Turner DJ, Patel J, Karamanou D, Snelgrove RJ, et al. A role for dendritic cells in the dissemination of mycobacterial infection. Microbes Infect. 2006;8 (Apr(5)):1339-46.

51. Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol. 2015;45(Apr (4)):1159-69.

52. Andersen P, Kaufmann SH. Novel vaccination strategies against tuberculosis. Cold Spring Harbor Perspect Med. 2014;4 (Jun (6)):a018523.

53. Hanekom WA. The immune response to BCG vaccination of newborns. Ann N Y Acad Sci. 2005;1062(Dec (1)):69-78.

54. Murray RA, Mansoor N, Harbacheuski R, Soler J, Davids V, Soares A, et al. Bacillus Calmette Guerin vaccination of human newborns induces a specific, functional CD8+ T cell response. J Immunol. 2006;177(Oct (8)):5647-51.

55. Soares AP, Kwong Chung CK, Choice T, Hughes EJ, Jacobs G, van Rensburg EJ, et al. Longitudinal changes in CD4+ T-cell memory responses induced by BCG vaccination of newborns. J Infect Dis. 2013;207(Apr (7)):1084-94.

56. Silva CL, Bonato VL, Lima VM, Faccioli LH, Leao SC. Characterization of the memory/activated T cells that mediate the long-lived host response against tuberculosis after bacillus Calmette-Guérin or DNA vaccination. Immunology. 1999;97(Aug (4)):573.

57. World Health Organization. WHO guidelines on tuberculosis infection prevention and control: 2019 update. World Health Organization; 2019.

58. Grime P. BCG re-vaccination. Thorax. 2001;56(Sep (9)):741-2.

59. Silva VM, Cunha AJ, Kritski AL. Tuberculin skin test conversion among medical students at a teaching hospital in Rio de Janeiro, Brazil. Infect Control Hosp Epidemiol. 2002;23(Oct (10)):591-4.

60. Brewer TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature. Clin Infect Dis. 2000;31 Sep (Supplement 3): S64-7.

61. Komine-Aizawa S, Yamazaki T, Yamazaki T, Hattori SI, Miyamoto Y, Yamamoto N, et al. Influence of advanced age on Mycobacterium bovis BCG vaccination in guinea pigs aerogenically infected with Mycobacterium tuberculosis. Clin Vaccine Immunol. 2010;17(Oct (10)):150.