Protopine alleviates lipopolysaccharide-triggered intestinal epithelial cell injury through retarding the NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress

Main Article Content

Junyu Li
Zhongjun Xu
Canhui OuYang
Xiongjian Wu
Yun Xie
Jun Xie


inflammation, intestinal epithelial cell injury, LPS, oxidative stress, protopine


Background: Inflammatory bowel disease (IBD) is a common chronic intestinal disease. Protopine isolated from different plants has been investigated to understand its special functions on varied diseases. However, the regulatory effects of protopine on the progression of IBD remain unclear. Our study is aimed to explore the effects of protopine on the progression of IBD and its underlying regulatory mechanism of action.

Methods: The cell viability was assessed through MTT colorimetric assay. The protein expressions of genes were examined by Western blot analysis. The cell apoptosis and reactive oxygen species level were measured using flow cytometry. The levels of inflammation and oxidative stress-related proteins were tested through enzyme-linked-immunosorbent serologic assay. The intracellular Ca2+ concentration and mitochondrial membrane potential were measured through immunofluorescence assay.

Results: First, different concentrations of lipopolysaccharide (LPS) were treated with NCM460 cells to establish IBD cell model, and 5-μg/mL LPS was chosen for followed experiments. In this study, we discovered that protopine relieved the LPS-induced inhibited intestinal epithelial cell viability and enhanced cell apoptosis. Moreover, protopine attenuated LPS-stimulated inflammation activation and oxidative stress. Further experiments illustrated that the increased intracellular Ca2+ concentration and decreased mitochondrial membrane potential stimulated by LPS were reversed by protopine treatment. Finally, through Western blot analysis, it was demonstrated that protopine retarded the activated NLR family pyrin domain containing 3 (NLRP3) and nuclear factor kappa B (NF-κB) signaling pathways mediated by LPS.

Conclusion: Protopine alleviated LPS-triggered intestinal epithelial cell injury by inhibiting NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress. This discovery may provide a useful drug for treating IBD.

Abstract 170 | PDF Downloads 190 HTML Downloads 15 XML Downloads 8


1. Sairenji T, Collins KL, Evans DV. An update on inflammatory bowel disease. Prim Care. 2017;44(4):673–92. 10.1016/j.pop.2017.07.010

2. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 2019;12(2):113–22. 10.25122/jml-2018-0075

3. Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 2014;20(1):91–9. 10.3748/wjg.v20.i1.91

4. Kennedy B, Sexton K, Gleeson N. Outcomes of palliative surgery for bowel obstruction in end of life ovarian cancer care in a tertiary cancer centre. Eur J Gynaecol Oncol. 2021;42(6):1112–5. 10.31083/j.ejgo4206162

5. Flynn S, Eisenstein S. Inflammatory bowel disease presentation and diagnosis. Surg Clin N Am. 2019;99(6):1051–62. 10.1016/j.suc.2019.08.001

6. Davis BK, Philipson C, Hontecillas R, Eden K, BassaganyaRiera J, Allen IC. Emerging significance of NLRs in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(12):2412–32. 10.1097/MIB.0000000000000151

7. Nitzan O, Elias M, Peretz A, Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1078–87. 10.3748/wjg.v22.i3.1078

8. Wehkamp J, Götz M, Herrlinger K, Steurer W, Stange EF. Inflammatory bowel disease. Dtsch Arzteblatt Int. 2016;113(5):72–82. 10.3238/arztebl.2016.0072

9. Wallam S, Dugan K, Levinson K. Salvage chemotherapy after treatment with immune checkpoint inhibitors in women with recurrent cervical cancer. Eur J Gynaecol Oncol. 2021;42(2):394.

10. Huang W, Kong L, Cao Y, Yan L. Identification and quantification, metabolism and pharmacokinetics, pharmacological activities, and botanical preparations of protopine: A review. Molecules (Basel, Switzerland). 2021;27(1):215. 10.3390/molecules27010215

11. Bae DS, Kim YH, Pan CH, Nho CW, Samdan J, Yansan J, et al. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep. 2012;45(2):108–13. 10.5483/BMBRep.2012.45.2.108

12. Kosina P, Gregorova J, Gruz J, Vacek J, Kolar M, Vogel M, et al. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia. 2010;81(8):1006–12. 10.1016/j.fitote.2010.06.020

13. Zhang X, Wang Y, Zhang K, Sheng H, Wu Y, Wu H, et al. Discovery of tetrahydropalmatine and protopine regulate the expression of dopamine receptor D2 to alleviate migraine from Yuanhu Zhitong formula. Phytomed Int J Phytother Phytopharmacol. 2021;91:153702. 10.1016/j.phymed.2021.153702

14. Zhang B, Zeng M, Li M, Kan Y, Li B, Xu R, et al. Protopine protects mice against LPS-induced acute kidney injury by inhibiting apoptosis and inflammation via the TLR4 signaling pathway. Molecules (Basel, Switzerland). 2019;25(1):15. 10.3390/molecules25010015

15. Nie C, Wang B, Wang B, Lv N, Yu R, Zhang E. Protopine triggers apoptosis via the intrinsic pathway and regulation of ROS/PI3K/Akt signalling pathway in liver carcinoma. Cancer Cell Int. 2021;21(1):396. 10.1186/s12935-021-02105-5%

16. Son Y, An Y, Jung J, Shin S, Park I, Gwak J, et al. Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53. Phytother Res (PTR). 2019;33(6):1689–96. 10.1002/ptr.6357

17. Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Senapati S, Malampati S, Zhu Z, et al. Protopine promotes the proteasomal degradation of pathological tau in Alzheimer’s disease models via HDAC6 inhibition. Phytomed Int J Phytother Phytopharmacol. 2022;96:153887. 10.1016/j.phymed.2021.153887

18. Alam MB, Ju MK, Kwon YG, Lee SH. Protopine attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol. 2019;131:110583. 10.1016/j.fct.2019.110583

19. Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, GarridoMesa J, Utrilla MP, et al. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomed Int J Phytother Phytopharmacol. 2016;23(9):901–13. 10.1016/j.phymed.2016.05.003

20. Li YQ, Wang LC, Li AX, Huang W, Song Y, Wang W. LINC00958/ miR-627 signal axis regulates the proliferation, migration, and invasion of thyroid papillary carcinoma cells by TRIM44. Kaohsiung J Med Sci. 2022;38(5):415–24. 10.1002/kjm2.12502

21. Liang M, Zhu B, Wang M, Jin J. Knockdown of long non-coding RNA DDX11-AS1 inhibits the proliferation, migration and paclitaxel resistance of breast cancer cells by upregulating microRNA-497 expression. Mol Med Rep. 2022;25(4):123. 10.3892/mmr.2022.12639

22. Xu X, Xie Q, Xie M, Zeng Y, Liu Q. LncRNA SNHG8 serves as an oncogene in breast cancer through miR-634/ZBTB20 Axis. Cancer Manag Res. 2021;13:3017–28. 10.2147/CMAR.S270128

23. Xu J, Chen Z, Fang Z, Chen S, Guo Y, Liu X, et al. Long non-coding RNA OIP5-AS1 promotes the progression of esophageal cancer by regulating miR-30a/VOPP1 expression. Oncol Lett. 2021;22(3):651. 10.3892/ol.2021.12912

24. Liu XL, Meng YH, Wang JL, Yang BB, Zhang F, Tang SJ. FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer cells. Int J Clin Exp Pathol. 2014;7(4):1534–43.

25. Zuo X, Li W, Yan X, Ma T, Ren Y, Hua M, et al. Long non-coding RNA LINC01224 promotes cell proliferation and inhibits apoptosis by regulating AKT3 expression via targeting miR-485-5p in endometrial carcinoma. Oncol Rep. 2021;46(3):186. 10.3892/or.2021.8137

26. Ye Z, Wei L, Yin X, Li H, Qin G, Li S, et al. Long non-coding RNA cancer susceptibility candidate 2 regulates the function of human fibroblast-like synoviocytes via the microRNA-18a-5p/B-cell translocation gene 3 signaling axis in rheumatoid arthritis. Bioengineered. 2022;13(2):3240–50. 10.1080/21655979.2021.2022075

27. Zhang J, Jiang H, Liu DH, Wang GN. Effects of dexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(15):6736–43.

28. Wu ZC, Hui XG, Huo L, Sun DX, Peng W, Zhang Y, et al. Antiproliferative effects of isoalantolactone in human liver cancer cells are mediated through caspase-dependent apoptosis, ROS generation, suppression of cell migration and invasion and targeting Ras/Raf/MEK signalling pathway. Acta Biochim Pol. 2022;69(2):299–304. 10.18388/abp.2020_5704

29. Skonieczna M, Hudy D, Poterala-Hejmo A, Hejmo T, Buldak RJ, Dziedzic A. Effects of resveratrol, berberine and their combinations on reactive oxygen species, survival and apoptosis in human squamous carcinoma (SCC-25) cells. Anti-Cancer Agents Med Chem. 2019;19(9):1161–71. 10.2174/1871520619666190405111151

30. Wang L, Li M, Sha B, Hu X, Sun Y, Zhu M, et al. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma. Cell Prolif. 2021;54(1):e12919. 10.1111/cpr.12919

31. Jouan E, Le Vée M, Mayati A, Denizot C, Parmentier Y, Fardel O. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics. 2016;8(2):12. 10.3390/pharmaceutics8020012.

32. Guo CC, Jiao CH, Gao ZM. Silencing of LncRNA BDNF-AS attenuates Aβ(25-35)-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res. 2018;40(9):795–804. 10.1080/01616412.2018.1480921

33. Jin J, Zhong Y, Long J, Wu T, Jiang Q, Wang H, et al. Ginsenoside Rg1 relieves experimental colitis by regulating balanced differentiation of Tfh/Treg cells. Int Immunopharmacol. 2021;100:108133. 10.1016/j.intimp.2021.108133

34. Wang Y, Shou Z, Fan H, Xu M, Chen Q, Tang Q, et al. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Biosci Rep. 2019;39(7):BSR20182297. 10.1042/BSR20182297

35. Su J, Li C, Yu X, Yang G, Deng J, Su Z, et al. Protective effect of pogostone on 2,4,6-trinitrobenzenesulfonic acid-induced experimental colitis via inhibition of T helper cell. Front Pharmacol. 2017;8:829. 10.3389/fphar.2017.00829

36. He X, Wei Z, Wang J, Kou J, Liu W, Fu Y, et al. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Sci Rep. 2016;6:28370. 10.1038/srep28370

37. Chen CH, Liao CH, Chang YL, Guh JH, Pan SL, Teng CM. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett. 2012; 315(1):1–11. 10.1016/j.canlet.2015.06.019

38. Saeed SA, Gilani AH, Majoo RU, Shah BH. Anti-thrombotic and anti-inflammatory activities of protopine. Pharmacol Res. 1997;36(1):1–7. 10.1006/phrs.1997.0195

39. Xiao X, Liu J, Hu J, Zhu X, Yang H, Wang C, et al. Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur J Pharmacol. 2008;591(1–3):21–7. 10.1016/j.ejphar.2008.06.045

40. Jang SE, Jeong JJ, Hyam SR, Han MJ, Kim DH. Ursolic acid isolated from the seed of Cornus officinalis ameliorates colitis in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 on macrophages. J Agric Food Chem. 2014;62(40):9711–21. 10.1021/jf501487v

41. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of Caspase-1 activation. Mol Cell. 2007;25(5):713–24. 10.1016/j.molcel.2007.01.032

42. Zhang S, Shao Q, Jia L, Zhou F. ANXA3 regulates HIF1 alpha-Induced NLRP3 inflammasome activity and promotes LPS-induced inflammatory response in bronchial epithelial cells. Signa Vitae. 2021;17(3):206–13.

43. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22. 10.1016/j.cell.2014.04.007

44. Cho Y-D, Choi S-H, Park S-J, Yu W-S, Cho H-J, Kim K-H, et al. The effects of oxygen and medicines on T cells in hypoxic co-culture. Signa Vitae. 2021;17(6):43–51.

45. Chao LK, Lin CH, Chiu HW, Wong WT, Chiu HW, Tasi YL, et al. Peroxyauraptenol inhibits inflammation and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and preserving mitochondrial integrity. J Agric Food Chem. 2015;63(4):1210–9. 10.1021/jf5054436

46. Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 2017;168(1–2):37–57. 10.1016/j.cell.2016.12.012

47. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019;10(12):906. 10.1038/s41419-019-2157-1

48. Chen Y, Lu Y, Pei C, Liang J, Ding P, Chen S, et al. Monotropein alleviates secondary liver injury in chronic colitis by regulating TLR4/NF-κB signaling and NLRP3 inflammasome. Eur J Pharmacol. 2020;883:173358. 10.1016/j.ejphar.2020.173358

49. Wang Z, Li C, He X, Xu K, Xue Z, Wang T, et al. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway. Food Funct. 2022;13(7):3946–56. 10.1039/D1FO03969E

50. Du X, Chen W, Wang Y, Chen C, Guo L, Ju R, et al. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol. 2017;45:16–25. 10.1016/j.intimp.2017.01.015