The immunopathology of coronary microembolization and the underlying inflammopathophysiological mechanisms

Main Article Content

Li Ma
Liping Cai
Jiayue Pan
Zimin Cheng
Yuanyuan Lv
Jie Zheng
Peicheng Xu
Hong Zhang
Xinyu Chen
Yimeng Huang
Xiaolei Luo
Jinhe Zhao
Liang Xu

Keywords

coronary, emboli, heart, immunopathology, signaling

Abstract

In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clinical symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction of the coronary microvessels and result in the micro-infarction of the heart. The inflammation and elevated expression of the tumor necrosis factor in cardiomyocytes and the activation of extracellular ERK are involved in initiating the inflammatory response mechanism. The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflammasomes contribute to the enhancement of vascular permeability, which results in edema within the myocardium. The immune response and inflammation represent the primary triggers in this process. The ability to control immune response and inflammation reactions may lead to the development of new therapies for microembolization.

Abstract 199 | PDF Downloads 322 HTML Downloads 0 XML Downloads 5

References

1 Golino P, Buja M, Sheng-Kun Y, McNatt J, Willerson JT. Failure of nitroglycerin and diltiazem to reduce platelet-mediated vasoconstriction in dogs with coronary artery stenosis and endothelial injury: Further evidence for thromboxane A2 and serotonin as mediators of coronary artery vasoconstriction in vivo. J Am Coll Cardiol. 1990;5:718–26. 10.1016/0735-1097(90)90652-6

2 Folts JD, Gallagher K, Rowe GG. Blood flow reductions in stenosed canine coronary arteries: Vasospasm or platelet aggregation? Circulation. 1985;65:248–55. 10.1161/01.CIR.65.2.248

3 Eidt JF, Allison P, Noble S, Ashton J, Golino P, McNatt J, et al. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989;84:18–27. 10.1172/JCI114138

4 Folts JD. Deleterious hemodynamic effects of thrombotic/embolic materials on the distal myocardial vasculature. Cardiovasc Res. 1999;42:6–7.

5 Gregorini L, Marco J, Heusch G. Peri-interventional coronary vasomotion. J Mol Cell Cardiol. 2012;52:883–9. 10.1016/j.yjmcc.2011.09.017

6 Fahed AC, Jang IK. Plaque erosion and acute coronary syndromes: Phenotype, molecular characteristics and future directions. Nat Rev Cardiol. 2021;18:724–34. 10.1038/s41569-021-00542-3

7 Kolte D, Libby P, Jang IK. New insights into plaque erosion as a mechanism of acute coronary syndromes. JAMA. 2021;325:1043–4. 10.1001/jama.2021.0069

8 Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33. 10.1038/s41586-021-03392-8

9 Puymirat E, Simon T, Cayla G, Cottin Y, Elbaz M, Coste P, et al. Acute myocardial infarction: Changes in patient characteristics, management, and 6-month outcomes over a period of 20 years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-elevation Myocardial Infarction) 1995 to 2015. Circulation. 2017;14:1908–19. 10.1161/CIRCULATIONAHA.117.030798

10 Cheng L, Chen Y, Pan W, Lu S, Chen Z, Shu X. Effect of microembolization on left ventricular systolic wall motion and dyssynchrony using dipyridamole stress two-dimensional speckle tracking imaging: An experimental study. J Med Ultrasound. 2013;21:189e197. 10.1016/j.jmu.2013.10.001

11 Li L, Qu N, Li DH, Wen WM, Huang WQ. Coronary microembolization induced myocardial contractile dysfunction and tumor necrosis factora mRNA expression partly inhibited by SB203580 through a p38 mitogen-activated protein kinase pathway. Chin Med J (Engl). 2011;124:100–5.

12 Schmitto JD, Ortmann P, Wachter R, Hintze E, Popov AF, Kolat P, et al. Chronic heart failure induced by multiple sequential coronary microembolization in sheep. Int J Artif Organs. 2008;31:348–53. 10.1177/039139880803100412

13 Carlsson M, Jablonowski R, Martin AJ, Ursell PC, Saeed M. Coronary microembolization causes long-term detrimental effects on regional left ventricular function. Scand Cardiovasc J. 2011;45:205–14. 10.3109/14017431.2011.568629

14 Dicks DL, Carlsson M, Heiberg E, Martin A, Saloner D, Arheden H, et al. Persistent decline in longitudinal and radial strain after coronary microembolization detected on velocity encoded phase contrast magnetic resonance imaging. J Magn Reson Imaging. 2009;30:69–76. 10.1002/jmri.21773

15 Carlsson M, Martin AJ, Ursell PC, Saloner D, Saeed M. Magnetic resonance imaging quantification of left ventricular dysfunction following coronary microembolization. Magn Reson Med. 2009;61:595–602. 10.1002/mrm.21869

16 Valero SJ, Moreno R, Reyes RM, Sánchez Recalde A, Galeote G, Calvo L, et al. Pharmacological approach of no-reflow phenomenon related with percutaneous coronary interventions. Cardiovasc Hematol Agents Med Chem. 2008;6:125–9. 10.2174/187152508783955079

17 Perk G, Kronzon I. Non-Doppler two dimensional strain imaging for evaluation of coronary artery disease. Echocardiography. 2009;26:299–306. 10.1111/j.1540-8175.2008.00863.x

18 Madriago E, Sahn DJ, Balaji S. Optimization of myocardial strain imaging and speckle tracking for resynchronization after congenital heart surgery in children. Europace. 2010;12:1341–3. 10.1093/europace/euq169

19 Marwick TH. Measurement of strain and strain rate by echocardiography: Ready for prime time? J Am Coll Cardiol. 2006;47:1313–27. 10.1016/j.jacc.2005.11.063

20 Gorcsan J 3rd, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58:1401–13. 10.1016/j.jacc.2011.06.038

21 Heusch, G. Myocardial ischaemia–Reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89. 10.1038/s41569-020-0403-y

22 Heusch G. Coronary microvascular obstruction: The new frontier in cardioprotection. Basic Res Cardiol. 2019;114:45. 10.1007/s00395-019-0756-8

23 Liu Z, Zhao L, Hong D, GaoJ. Remote ischaemic preconditioning reduces myocardial ischaemic reperfusion injury in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Acta Cardiol. 2016;71:596–603. 10.1080/AC.71.5.3167504

24 Stone GW, Maehara A, Muller JE, Rizik DG, Shunk KA, Ben-Yehuda O, et al. Plaque characterization to inform the prediction and prevention of periprocedural myocardial infarction during percutaneous coronary intervention: The CANARY Trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC Cardiovasc Interv. 2015;8:927–36. 10.1016/j.jcin.2015.01.032

25 Kleinbongard P, Heusch G. A fresh look at coronary Microembolization. Nat Rev Cardiol. 2022;19(4):265–80. 10.1038/s41569-021-00632-2

26 Erbel R, Heusch G. Brief review: Coronary microembolization. J Am Coll. Cardiol. 2000;36:22–4. 10.1016/S0735-1097(00)00708-7

27 Topol EJ, Yadav JS. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation. 2000;101:570–80. 10.1161/01.CIR.101.5.570

28 Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the mechanisms of acute coronary syndromes. Circ Res. 2019;124:150–60. 10.1161/CIRCRESAHA.118.311098

29 Partida RA, Libby P, Crea F, Jang IK. Plaque erosion: A new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070–6. 10.1093/eurheartj/ehx786

30 Athari SS, Athari SM. The importance of eosinophil, platelet and dendritic cell in asthma. Asian Pac J Trop Dis. 2014;4(1):41–7. 10.1016/S2222-1808(14)60413-8

31 Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289–367. 10.1093/eurheartj/ehaa575

32 Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction. Circulation. 2018;138:e618–e651. 10.1161/CIR.0000000000000617

33 Hibi K, Kozuma K, Sonoda S, Endo T, Tanaka H, Kyono H, et al. A randomized study of distal filter protection versus conventional treatment during percutaneous coronary intervention in patients with attenuated plaque identified by intravascular ultrasound. JACC Cardiovasc Interv. 2018;11:1545–55. 10.1016/j.jcin.2018.03.021

34 Feistritzer HJ, Meyer-Saraei R, Lober C, Böhm M, Scheller B, Lauer B, et al. Long-term outcome after thrombus aspiration in non-ST-elevation myocardial infarction: Results from the TATORT-NSTEMI trial: Thrombus aspiration in acute myocardial infarction. Clin Res Cardiol. 2020;109:1223–31. 10.1007/s00392-020-01613-0

35 Skyschally A, Schulz R, Erbel R, Heusch G. Reduced coronary and inotropic reserves with coronary microembolization. Am J Physiol Heart Circ Physiol. 2002;282:H611–4. 10.1152/ajpheart.00797.2001

36 Agress CM, Rosenburg MJ, Binder MJ, Schneiderman A, Clark WG. Blood volume changes in protracted shock resulting from experimental myocardial infarction. Am J Physiol. 1951;166:603–9. 10.1152/ajplegacy.1951.166.3.603

37 Saeed M, Hetts SW, Ursell PC, Do L, Kolli KP, Wilson MW. Evaluation of the acute effects of distal coronary microembolization using multidetector computed tomography and magnetic resonance imaging. Magn Reson Med. 2012;67:1747–57. 10.1002/mrm.23149

38 Nassenstein K, Breuckmann F, Bucher C, Kaiser G, Konorza T, Schäfer L, et al. How much myocardial damage is necessary to enable detection of focal late gadolinium enhancement at cardiac MR imaging? Radiology. 2008;249:829–35. 10.1148/radiol.2493080457

39 Lankarani KB, Honarvar B, Athari SS. The mechanisms underlying Helicobacter pylori–mediated protection against allergic asthma. Tanaffos. 2017;16(4):251–9.

40 Breuckmann F, Nassenstein K, Bucher C, Konietzka I, Kaiser G, Konorza T, et al. Systematic analysis of functional and structural changes after coronary microembolization: A cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging. 2009;2:121–30. 10.1016/j.jcmg.2008.10.011

41 Carlsson M, Jablonowski R, Martin AJ, Ursell PC, Saeed M. Coronary microembolization causes long-term detrimental effects on regional left ventricular function. Scand Cardiovasc J. 2011;45:205–14. 10.3109/14017431.2011.568629

42 Leach IH, Blundell JW, Rowley JM, Turner DR. Acute ischaemic lesions in death due to ischaemic heart disease. An autopsy study of 333 cases of out-of-hospital death. Eur Heart J. 1995;16:1181–5. 10.1093/oxfordjournals.eurheartj.a061073

43 Haller PM, Beer BN, Tonkin AM, Blankenberg S, Neumann JT. Role of cardiac biomarkers in epidemiology and risk outcomes. Clin Chem. 2021;67:96–106. 10.1093/clinchem/hvaa228

44 Herrmann J. Periprocedural myocardial injury: Update. Eur Heart J. 2005;26:2493–519. 10.1093/eurheartj/ehi455

45 Ganesha Babu G, Malcolm WJ, Yellon DM, Hausenloy DJ. Peri-procedural myocardial injury during percutaneous coronary intervention: An important target for cardioprotection. Eur Heart J. 2011;32:23–31. 10.1093/eurheartj/ehq393

46 Bulluck H, Paradies V, Barbato E, Baumbach A, Bøtker HE, Capodanno D, et al. Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: A consensus document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2021;42:2630–42. 10.1093/eurheartj/ehab271

47 Baars T, Konorza T, Kahlert P, Möhlenkamp S, Erbel R, Heusch G, et al. Coronary aspirate TNF alpha reflects saphenous vein bypass graft restenosis risk in diabetic patients. Cardiovasc Diabetol. 2013;12:12. 10.1186/1475-2840-12-12

48 Masoume Athari S, Mehrabi Nasab E, Shamsadin Athari S. Study effect of Ocimum basilicum seeds on mucus production and cytokine gene expression in allergic asthma mice model. Rev Fr Allergol. 2018;58(7):489–93. 10.1016/j.reval.2018.08.003

49 Baars T, Kleinbongard P, Böse D, Konorza T, Möhlenkamp S, Hippler J, et al. Saphenous vein aorto-coronary graft atherosclerosis in patients with chronic kidney disease: More plaque calcification and necrosis, but less vasoconstrictor potential. Basic Res Cardiol. 2012;107:303. 10.1007/s00395-012-0303-3

50 Kleinbongard P, Baars T, Möhlenkamp S, Kahlert P, Erbel R, Heusch G. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: More endothelin but less particulate debris. Am J Physiol Heart Circ Physiol. 2013;305:H1222–9. 10.1152/ajpheart.00358.2013

51 Grube E, Gerckens U, Yeung AC, Rowold S, Kirchhof N, Sedgewick J, et al. Prevention of distal embolization during coronary angioplasty in saphenous vein grafts and native vessels using porous filter protection. Circulation. 2001;104:2436–41. 10.1161/hc4501.099317

52 Mehrabi Nasab E, Athari SM, Motlagh B, Athari SS. Effects of oral administration of Ocimum basilicum on goblet cell hyperplasia and upstream cytokine gene expression in allergic asthma. Rev Fr Allergol. 2020;60:64–8. 10.1016/j.reval.2019.02.226

53 Kini A, Kini S, Marmur JD, Bertea T, Dangas G, Cocke TP, et al. Incidence and mechanism of creatine kinase-MB enzyme elevation after coronary intervention with different devices. Catheter Cardiovasc Interv. 1999;48:123–9. 10.1002/(SICI)1522-726X(199910)48:2<123::AID-CCD1>3.3.CO;2-F

54 Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother. 2020;123:109685. 10.1016/j.biopha.2019.109685

55 Chen ZQ, Zhou Y, Chen F, Huang JW, Li HL, Li T, et al. miR-200a-3p attenuates coronary microembolization-induced myocardial injury in rats by inhibiting TXNIP/NLRP3-mediated cardiomyocyte pyroptosis. Front Cardiovasc Med. 2021;8:693257. 10.3389/fcvm.2021.693257

56 Zhou Y, Li T, Chen Z, Huang J, Qin Z, Li L. Overexpression of lncRNA TUG1 alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis through targeting the miR-186-5p/XIAP axis in coronary microembolization induced myocardial damage. Front Immunol. 2021;12:637598. 10.3389/fimmu.2021.637598

57 Hori M, Gotoh K, Kitakaze M, Iwai K, Iwakura K, Sato H, et al. Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation. 1991;84:828–40. 10.1161/01.CIR.84.2.828

58 Yuan Y, Li B, Peng W, Xu Z. Protective effect of glycyrrhizin on coronary microembolization-induced myocardial dysfunction in rats. Pharmacol Res Perspect. 2021;9(1):e00714. 10.1002/prp2.714

59 Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G, Athari SS. Oral administration of acrylamide worsens the inflammatory responses in the airways of asthmatic mice through agitation of oxidative stress in the lungs. Front Immunol. 2020;11:1940. 10.3389/fimmu.2020.01940

60 Dörge H, Neumann T, Behrends M, Skyschally A, Schulz R, Kasper C, et al. Perfusion–contraction mismatch with coronary microvascular obstruction: Role of inflammation. Am J Physiol Heart Circ Physiol. 2000;279:H2587–92. 10.1152/ajpheart.2000.279.6.H2587

61 Arras M, Strasser R, Mohri M, Doll R, Eckert P, Schaper W, et al. Tumor necrosis factor-α is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res Cardiol. 1998;93: 97–107. 10.1007/s003950050069

62 Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, et al. Coronary microembolization: The role of TNFa in contractile dysfunction. J Mol Cell Cardiol. 2002;34:51–62. 10.1006/jmcc.2001.1489

63 Wang D, Nasab EM, Athari SS. Study effect of Baicalein encapsulated/loaded Chitosan-nanoparticle on allergic asthma pathology in mouse model. Saudi J Biol Sci. 2021;28:4311–7. 10.1016/j.sjbs.2021.04.009

64 Cao YY, Chen ZW, Jia JG, Chen A, Zhou Y, Ye Y, et al. Establishment of a novel mouse model of coronary microembolization. Chin Med J (Engl). 2016;129:2951–7. 10.4103/0366-6999.195469

65 Li L, Zhao X, Lu Y, Huang W, Wen W. Altered expression of pro-and anti-inflammatory cytokines is associated with reduced cardiac function in rats following coronary microembolization. Mol Cell Biochem. 2010;342:183–90. 10.1007/s11010-010-0482-x

66 Kluge A, Zimmermann R, Münkel B, Mohri M, Sack S, Schaper J, et al. Insulin-like growth factor I is involved in inflammation linked angiogenic processes after microembolisation in porcine heart. Cardiovasc Res. 1995;29:404–15. 10.1016/0008-6363(96)88599-3

67 Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW. Microvascular occlusions promote coronary collateral growth. Am J Physiol. 1990;258:H1103–11. 10.1152/ajpheart.1990.258.4.H1103

68 Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, et al. Myocardial dysfunction with coronary microembolization: Signal transduction through a sequence of nitric oxide, tumor necrosis factor-a and sphingosine. Circ Res. 2002;90:807–13. 10.1161/01.RES.0000014451.75415.36

69 Canton M, Skyschally A, Menabò R, Boengler K, Gres P, Schulz R, et al. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J. 2006;27:875–81. 10.1093/eurheartj/ehi751

70 Skyschally A, Gres P, van Caster P, van de Sand A, Boengler K, Schulz R, et al. Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization. Basic Res Cardiol. 2008;103:552–9. 10.1007/s00395-008-0732-1

71 Liu YC, Li L, Su Q, Liu T, Tang ZL. Trimetazidine pretreatment inhibits myocardial apoptosis and improves cardiac function in a swine model of coronary microembolization. Cardiology. 2015;130:130–6. 10.1159/000369246

72 Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31. 10.1056/NEJMoa1707914

73 Cao D, Chiarito M, Mehran R. Treating inflammation prior to percutaneous coronary intervention: Does the heart care? Circ Cardiovasc Interv. 2020;13:e009127. 10.1161/CIRCINTERVENTIONS.120.009127

74 Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry MC, et al. Pathological features of COVID-19-associated myocardial injury: A multicenter cardiovascular pathology study. Eur Heart J. 2020;41:3827–35. 10.1093/eurheartj/ehaa664

75 Wagner JUG, Bojkova D, Shumliakivska M, Luxán G, Nicin L, Aslan GS, et al. Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants. Basic Res Cardiol. 2021;116:42. 10.1007/s00395-021-00882-8

76 Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276(6):618–32. 10.1111/joim.12296

77 Barbato E, Mehilli J, Sibbing D, Siontis GCM, Collet JP, Thiele H, et al. Questions and answers on antithrombotic therapy and revascularization strategies in non-ST-elevation acute coronary syndrome (NSTE-ACS): A companion document of the 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1368–78. 10.1093/eurheartj/ehaa601

78 Cao YY, Chen ZW, Jia JG, Chen A, Zhou Y, Ye Y, et al. Establishment of a novel mouse model of coronary microembolization. Chin Med J. 2016;129(24):2951–7. 10.4103/0366-6999.195469

79 Cambien B, Wagner DD. A new role in hemostasis for the adhesion receptor P-selectin. Trends Mol Med. 2004;10:179–86. 10.1016/j.molmed.2004.02.007

80 Huang M, Nasab EM, Athari SS. Immunoregulatory effect of mesenchymal stem cell via mitochondria signaling pathways in allergic asthma. Saudi J Biol Sci. 2021;28:6957–62. 10.1016/j.sjbs.2021.07.071

81 Dobesh PP, Finks SW, Trujillo TC. Dual antiplatelet therapy for long-term secondary prevention of atherosclerotic cardiovascular events. Clin Ther. 2020;42(10):2084–97. 10.1016/j.clinthera.2020.08.003

82 Fan ML, Tong HQ, Sun T, Zhang HW, Han J, Cheng SY, et al. Animal model of coronary microembolization under transthoracic echocardiographic guidance in rats. Biochem Biophys Res Commun. 2021;568:174–9. 10.1016/j.bbrc.2021.05.045

83 Galgano L, Guidetti GF, Torti M, Canobbio I. The controversial role of LPS in platelet activation in vitro. Int J Mol Sci. 2022;23(18):10900. 10.3390/ijms231810900

84 Gu Y, Bai Y, Wu J, Hu L, Gao B. Establishment and characterization of an experimental model of coronary thrombotic microembolism in rats. Am J Pathol. 2010;177(3):1122–30. 10.2353/ajpath.2010.090889

85 Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul. 2015;59:36–52. 10.1016/j.jbior.2015.06.001

86 Liu CF, He LH, Wang JX, Wang QQ, Sun CC, Li YQ, et al. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. J Ethnopharmacol. 2020;260:113039. 10.1016/j.jep.2020.113039

87 Jiang J, Nasab EM, Athari SM, Athari SS. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir Physiol Neurobiol. 2021;286:103614. 10.1016/j.resp.2020.103614

88 Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62. 10.1056/NEJMoa0809171

89 Moore SF, Hunter RW, Hers I. mTORC2 protein complex-mediated Akt (Protein Kinase B) serine 473 phosphorylation is not required for Akt1 activity in human platelets [corrected]. J Biol Chem. 2011;286(28):24553–60. 10.1074/jbc.M110.202341

90 Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol. 2015;94:186–94. 10.1016/j.bcp.2015.02.004

91 Suo L, Chang X, Zhao Y. The orexin-A-regulated Akt/mTOR pathway promotes cell proliferation through inhibiting apoptosis in pancreatic cancer cells. Front Endocrinol (Lausanne). 2018;9:647. 10.3389/fendo.2018.00647

92 Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114:449–58. 10.1160/TH14-12-1067

93 Haddadzadeh H, Athari SS, Hajimohammadi B. The first record of Linguatula serrata infection of two-humped camel (Camelus bacterinus) in Iran. Iranian J Parasitol. 2009;4(1):59–61.

94 Wang MX, Xiang Q, Sun WX, Zhang HW, Shi RJ, Guo J, et al. Qihuang Zhuyu formula attenuates atherosclerosis via targeting PPARγ to regulate cholesterol efflux and endothelial cell inflammation. Oxid Med Cell Longev. 2022;2022:2226168. 10.1155/2022/2226168

95 Wu X, Pu L, Chen W, Zhao Q, Wu G, Li D, et al. LY294002 attenuates inflammatory response in endotoxin-induced uveitis by downregulating JAK3 and inactivating the PI3K/Akt signaling. Immunopharmacol Immunotoxicol. 2022;44(4):510–8. 10.1080/08923973.2022.2055565

96 Zou J, Swieringa F, de Laat B, de Groot PG, Roest M, Heemskerk JWM. Reversible Platelet Integrin αIIbβ3 activation and thrombus instability. Int J Mol Sci. 2022;23(20):12512. 10.3390/ijms232012512

97 Ding Y, Xiang Q, Zhu P, Fan M, Tong H, Wang M, et al. Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation. Phytomedicine. 2024;125:155276. 10.1016/j.phymed.2023.155276

98 Stempien-Otero A, Karsan A, Cornejo CJ, Xiang H, Eunson T, Morrison RS, et al. Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem. 1999;274:8039–45. 10.1074/jbc.274.12.8039

99 Maxwell L, Gavin JB. The role of post-ischaemic reperfusion in the development of microvascular incompetence and ultrastructural damage in the myocardium. Basic Res Cardiol. 1991;86:544–53. 10.1007/BF02190704

100 Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, et al. The coronary circulation in acutemyocardial ischaemia/reperfusion injury: A target for cardioprotection. Cardiovasc Res. 2019;115:1143–55. 10.1093/cvr/cvy286

101 Kasseckert SA, Schafer C, Kluger A, Gligorievski D, Tillmann J, Schluter KD, et al. Stimulation of cGMP signalling protects coronary endothelium against reperfusion-induced intercellular gap formation. Cardiovasc Res. 2009;83:381–7. 10.1093/cvr/cvp065

102 Scotland RS, Cohen M, Foster P, Lovell M, Mathur A, Ahluwalia A, et al. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci USA. 2005;102:14452–7. 10.1073/pnas.0504961102

103 Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest. 2004;113:885–94. 10.1172/JCI200420702

104 Weis S, Cui J, Barnes L, Cheresh D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004;167:223–9. 10.1083/jcb.200408130

105 Liu Y, Lian K, Zhang L, Wang R, Yi F, Gao C, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2014;109:415. 10.1007/s00395-014-0415-z

106 Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, et al. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. Circulation. 2012;125:140–9. 10.1161/CIRCULATIONAHA.111.049072

107 Hami M, Naddaf SR, Mobedi I, Zare Bidaki M, Athari SS, Hajimohammadi B, et al. Prevalence of Linguatula serrata infection in domestic bovids slaughtered in Tabriz Abattoir, Iran. Iranian J Parasitol. 2009;4(3):25–31.

108 Mollenhauer M, Friedrichs K, Lange M, Gesenberg J, Remane L, Kerkenpaß C, et al. Myeloperoxidase mediates postischemic arrhythmogenic ventricular remodeling. Circ Res. 2017;121:56–70. 10.1161/CIRCRESAHA.117.310870

109 Bitencourt CS, Bessi VL, Huynh DN, Menard L, Lefebvre JS, Levesque T, et al. Cooperative role of endogenous leucotrienes and platelet-activating factor in ischaemia-reperfusion-mediated tissue injury. J Cell Mol Med. 2013;17:1554–65. 10.1111/jcmm.12118

110 Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504. 10.1038/nature03987

111 Feng Y, Venema VJ, Venema RC, Tsai N, Behzadian MA, Caldwell RB. VEGF-induced permeability increase is mediated by caveolae. Invest Ophthalmol Vis Sci. 1999;40:157–67.

112 Garcia-Dorado D, Andres-Villarreal M, Ruiz-Meana M, Inserte J, Barba I. Myocardial edema: A translational view. J Mol Cell Cardiol. 2012;52:931–9. 10.1016/j.yjmcc.2012.01.010

113 Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J. Calpain-mediated impairment of Naþ/Kþ-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res. 2005;97:465–73. 10.1161/01.RES.0000181170.87738.f3

114 Dhainaut J-F, Shorr AF, Macias WL, Kollef MJ, Levi M, Reinhart K, et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: Relationship with mortality and organ failure. Crit Care Med. 2005;33:341–8. 10.1097/01.CCM.0000153520.31562.48

115 Müller MC, Meijers JCM, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: A systematic review. Crit Care. 2014;18(1):R30. 10.1186/cc13721

116 Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578–89. 10.1002/ajh.25982

117 Wada H. Disseminated intravascular coagulation. Clin Chim Acta. 2004;344:13–21. 10.1016/j.cccn.2004.02.015

118 Haddadzadeh HR, Athari SS, Abedini R, Khazraii Nia S, Khazraii Nia P, Nabian S, et al. One-humped camel (Camelus dromedarius) infestation with Linguatula serrata in Tabriz, Iran. Iran J Arthropod Borne Dis. 2010;4(1):54–9.

119 Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–28. 10.1007/s00281-017-0639-8

120 Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. 10.1016/S0140-6736(20)30628-0

121 England JT, Abdulla A, Biggs CM, Lee AYY, Hay KA, Hoiland RL, et al. Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Rev. 2020;45:100707. 10.1016/j.blre.2020.100707

122 Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: A distinct entity leading to early death in sepsis. Front Immunol. 2019;10:55. 10.3389/fimmu.2019.00055

123 Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. 10.3389/fimmu.2019.00119

124 Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5):2620–9. 10.1172/JCI137244

125 Henry BM, Oliveira MHS De, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med. 2020;58(7):1021–8. 10.1515/cclm-2020-0369

126 Ranucci M, Ballotta A, Dedda UD, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–51. 10.1111/jth.14854

127 Ng LFP, Hibberd ML, Ooi EE, Tang KF, Neo SY, Tan J, et al. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC Infect Dis. 2004;4:34. 10.1186/1471-2334-4-34

128 Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. 10.1016/j.jcv.2020.104362

129 Poon TCW, Pang RTK, Chan KCA, Lee NLS, Chiu RWK, Tong YK, et al. Proteomic analysis reveals platelet factor 4 and beta-thromboglobulin as prognostic markers in severe acute respiratory syndrome. Electrophoresis. 2012;33:1894–900. 10.1002/elps.201200002

130 Lupu F, Keshari RS, Lambris JD, Mark Coggeshall K. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res. 2014;133 Suppl 1(0 1):S28–31. 10.1016/j.thromres.2014.03.014

131 Chen ZQ, Zhou Y, Chen F, Huang JW, Zheng J, Li HL, et al. Breviscapine pretreatment inhibits myocardial inflammation and apoptosis in rats after coronary microembolization by activating the PI3K/Akt/GSK-3β signaling pathway. Drug Des Devel Ther. 2021;15:843–55. 10.2147/DDDT.S293382

132 Jorgensen L, Rowsell HC, Hovig T, Glynn MF, Mustard JF. Adenosine diphosphate-induced platelet aggregation and myocardial infarction in swine. Lab Invest. 1967;17:616–44.

133 Erbel R, Heusch G. Coronary microembolization. J Am Coll Cardiol. 2000;36(1):22–4. 10.1016/S0735-1097(00)00708-7

134 Falk E. Unstable angina with fatal outcome: Dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985;71:699–708. 10.1161/01.CIR.71.4.699

135 Leach IH, Blundell JW, Rowley JM, Turner DR. Acute ischemic lesions in death due to ischemic heart disease. An autopsy study of 333 cases of out-of-hospital death. Eur Heart J. 1995;16:1181–5. 10.1093/oxfordjournals.eurheartj.a061073

136 Davies MJ, Thomas AC, Knapman PA, Hangartner JR. Intra-myocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation. 1986;73:418–27. 10.1161/01.CIR.73.3.418

137 Skyschally A, Erbel R, Heusch G. Coronary microembolization. Circ J. 2003;67:279–286. 10.1253/circj.67.279

138 Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, et al. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: Results from the prospective translational OPTICO-ACS study. Eur Heart J. 2020;41:3549–60. 10.1093/eurheartj/ehaa703

139 Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, et al. Coronary microembolization: The role of TNFαin contractile dysfunction. J Mol Cell Cardiol. 2002;34:51–62. 10.1006/jmcc.2001.1489

140 Zheng J, Long M, Qin Z, Wang F, Chen Z, Li L. Nicorandil inhibits cardiomyocyte apoptosis and improves cardiac function by suppressing the HtrA2/XIAP/PARP signaling after coronary microembolization in rats. Pharmacol Res Perspect. 2021;9:e00699. 10.1002/prp2.699

141 Qian L, Nasab EM, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med. 2022;70(4):863–82. 10.1136/jim-2021-002098

142 Mao Q, Liang X, Wu Y, Lu Y. Nobiletin protects against myocardial injury and myocardial apoptosis following coronary microembolization via activating PI3K/Akt pathway in rats. Naunyn Schmiedebergs Arch Pharmacol. 2019;392:1121–30. 10.1007/s00210-019-01661-y

143 Ghasemi F, Sarabi PZ, Athari SS, Esmaeilzadeh A. Therapeutics strategies against cancer stem cell in breast cancer. Int J Biochem Cell Biol. 2019;109:76–81. 10.1016/j.biocel.2019.01.015

144 Cohen MV, Downey JM. What are optimal P2Y12 inhibitor and schedule of administration in patients with acute coronary syndrome? J Cardiovasc Pharmacol Ther. 2020;25:121–30. 10.1177/1074248419882923