Anethole ameliorates inflammation induced by monosodium urate in an acute gouty arthritis model via inhibiting TLRs/MyD88 pathway

Main Article Content

Yuepeng Cao
Qin Zhong
Fang Tang
Xueming Yao
Zhengqi Liu
Xiaodong Zhang

Keywords

acute gouty arthritis, anethole, inflammation, monosodium urate, TLRs/MyD88 pathway

Abstract

Objective: To assess the effects of anethole on monosodium urate (MSU)-induced inflammatory response, investigate its role in acute gouty arthritis (AGA), and verify its molecular mechanism.


Methods: Hematoxylin and eosin staining assay and time-dependent detection of degree of ankle swelling were performed to assess the effects of anethole on joint injury in MSU-induced AGA mice. Enzyme-linked-immunosorbent serologic assay was performed to demonstrate the production levels of inflammatory factors (interleukin 1β [IL-1β], interleukin 6 [IL-6], interleukin 8 [IL-8], tumor necrosis factor α [TNF-α], and monocyte chemo-attractant protein-1 [MCP-1]) in MSU-induced AGA mice. Western blot assays were used to confirm the effects of anethole on oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activity and the activation of toll-like receptors (TLRs)–myeloid differentiation factor 88 (MyD88) pathway in MSU-induced AGA mice.


Results: We observed that a significant joint injury occurred in MSU-induced AGA mice. Anethole could alleviate the pathological injury of the synovium in MSU-induced AGA mice and suppressed ankle swelling. In addition, we observed that anethole could inhibit MSU-induced inflammatory response and inflammasome activation in MSU-induced AGA mice. Moreover, we discovered that anethole enabled to inhibit the activation of TLRs/MyD88 pathway in MSU-induced AGA mice. Our findings further confirmed that anethole contributed to the inhibitory effects on progression in MSU-induced AGA mice.


Conclusion: It confirmed that anethole ameliorated the MSU-induced inflammatory response in AGA mice in vivo via inhibiting TLRs–MyD88 pathway.

Abstract 193 | PDF Downloads 198 HTML Downloads 10 XML Downloads 7

References

1. Dai XJ, Tao JH, Fang X, Xia Y, Li XM, Wang YP, et al. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals. Inflammation. 2018;41(5):1955–64. 10.1007/s10753-018-0839-y

2. Yao R, Geng Z, Mao X, Bao Y, Guo S, Bao L, et al. Tu-Teng-Cao extract alleviates monosodium urate-induced acute gouty arthritis in rats by inhibiting uric acid and inflammation. Evid Based Complement Alternat Med. 2020;2020:3095624. 10.1155/2020/3095624

3. Patil T, Soni A, Acharya S. A brief review on in vivo models for gouty arthritis. Metabol Open. 2021;11:100100. 10.1016/j.metop.2021.100100

4. Salamon AS, Capuder S, Kljucevsek D, Schara K, Paro-Panjan D. Osteoarticular infections in newborns: Prognostic factors and outcome. Signa Vitae. 2020;16(1):5–11. 10.22514/sv.2020.16.0002

5. Gonzalez EB. An update on the pathology and clinical management of gouty arthritis. Clin Rheumatol. 2012;31(1):13–21. 10.1007/s10067-011-1877-0

6. Han J, Xie Y, Sui F, Liu C, Du X, Liu C, et al. Zisheng shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti--oxidative effects. Mol Med Rep. 2016;14(3):2589–97. 10.3892/mmr.2016.5526

7. Deng J, Wu Z, Chen C, Zhao Z, Li Y, Su Z, et al. Chinese medicine huzhen tongfeng formula effectively attenuates gouty arthritis by inhibiting arachidonic acid metabolism and inflammatory mediators. Mediators Inflamm. 2020;2020:6950206. 10.1155/2020/6950206

8. Chen CH, deGraffenried LA. Anethole suppressed cell survival and induced apoptosis in human breast cancer cells independent of estrogen receptor status. Phytomedicine. 2012;19(8–9): 763–7. 10.1016/j.phymed.2012.02.017

9. Aprotosoaie AC, Costache I-I, Miron A. Anethole and its role in chronic diseases. Adv Exp Med Biol. 2016;929:247–67. 10.1007/978-3-319-41342-6_11

10. Luan Y, Luan Y, Feng Q, Chen X, Ren KD, Yang Y. Emerging role of mitophagy in the heart: Therapeutic potentials to modulate mitophagy in cardiac diseases. Oxid Med Cell Longev. 2021;2021:3259963. 10.1155/2021/3259963

11. Luan Y, Luan Y, Yuan RX, Feng Q, Chen X, Yang Y. Structure and function of mitochondria-associated endoplasmic reticulum membranes (MAMs) and their role in cardiovascular diseases. Oxid Med Cell Longev. 2021;2021:4578809. 10.1155/2021/4578809

12. Elkady AI. Anethole inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and apoptosis. Anticancer Agents Med Chem. 2018;18(2):216–36. 10.2174/1871520617666170725165717

13. Zhang S, Chen X, Devshilt I, Yun Q, Huang C, An L, et al. Fennel main constituent, trans-anethole treatment against LPS-induced acute lung injury by regulation of Th17/Treg function. Mol Med Rep. 2018;18(2):1369–76. 10.3892/mmr.2018.9149

14. Raman S, Asle-Rousta M, Rahnema M. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats. Physiol Int. 2020;107(1):30–9. 10.1556/2060.2020.00012

15. Feng Q, Liu D, Lu Y, Liu Z. The interplay of renin-angiotensin system and toll-like receptor 4 in the inflammation of diabetic nephropathy. J Immunol Res. 2020;2020:6193407. 10.1155/2020/6193407

16. Cronstein BN, Terkeltaub R. The inflammatory process of gout and its treatment. Arthritis Res Ther. 2006;8(Suppl 1):S3. 10.1186/ar1908

17. Yi Q, Liu J, Zhang Y, Qiao H, Chen F, Zhang S, et al. Anethole attenuates enterotoxigenic Escherichia coli-induced intestinal barrier disruption and intestinal inflammation via modification of TLR signaling and intestinal microbiota. Front Microbiol. 2021;12:647242. 10.3389/fmicb.2021.647242

18. Contant C, Rouabhia M, Loubaki L, Chandad F, Semlali A. Anethole induces anti-oral cancer activity by triggering apoptosis, autophagy and oxidative stress and by modulation of multiple signaling pathways. Sci Rep. 2021;11(1):13087. 10.1038/s41598-021-92456-w

19. Scuiller A, Pascart T, Bernard A, Oehler E. Gout. Rev Med Interne. 2020;41(6):396–403. 10.1016/j.revmed.2020.02.014

20. Li S, Li L, Yan H, Jiang X, Hu W, Han N, et al. Antigouty arthritis and antihyperuricemia properties of celery seed extracts in rodent models. Mol Med Rep. 2019;20(5):4623–33. 10.3892/mmr.2019.10708

21. Desai J, Steiger S, Anders HJ. Molecular pathophysiology of gout. Trends Mol Med. 2017;23(8):756–68. 10.1016/j.molmed.2017.06.005

22. Pillinger MH, Mandell BF. Therapeutic approaches in the treatment of gout. Semin Arthritis Rheum. 2020;50(3S):S24–30. 10.1016/j.semarthrit.2020.04.010

23. Rees F, Hui M, Doherty M. Optimizing current treatment of gout. Nat Rev Rheumatol. 2014;10(5):271–83. 10.1038/nrrheum.2014.32

24. Ghaemi-Oskouie F, Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep. 2011;13(2):160–6. 10.1007/s11926-011-0162-1

25. Liu-Bryan R. Intracellular innate immunity in gouty arthritis: Role of NALP3 inflammasome. Immunol Cell Biol. 2010;88(1):20–3. 10.1038/icb.2009.93

26. Martinon F. Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev. 2010;233(1):218–32. 10.1111/j.0105-2896.2009.00860.x

27. Wei H, Hu C, Xie J, Yang C, Zhao Y, Guo Y, et al. Doliroside A attenuates monosodium urate crystals-induced inflammation by targeting NLRP3 inflammasome. Eur J Pharmacol. 2014;740:321–8. 10.1016/j.ejphar.2014.07.023

28. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118(1):205–16. 10.1172/JCI32639

29. Wang L, Zhu L, Duan C, Li L, Chen G. Total saponin of Dioscorea collettii attenuates MSU crystal-induced inflammation via inhibiting the activation of the NALP3 inflammasome and caspase1 in THP1 macrophages. Mol Med Rep. 2020;21(6):2466–74. 10.3892/mmr.2020.11035

30. Ouyang X, Li N-Z, Guo M-X, Zhang M-M, Cheng J, Yi L-T, et al. Active flavonoids from Lagotis brachystachya attenuate MSU-induced gouty arthritis via inhibiting TLR4/MyD88/NF-κB pathway and NLRP3 expression. Front Pharmacol. 2021;12:760331. 10.3389/fphar.2021.760331