High throughput virtual screening strategy to develop a potential treatment for bronchial asthma by targeting interleukin 13 cytokine signaling

Main Article Content

Qin Ma
Huimin Tong
Junhu Jing

Keywords

interleukin, epinephrine, guaifenesin, molecular dynamic simulation

Abstract

Chronic inflammation in the airway passage leads to the clinical syndrome of pediatric asthma. Allergic reactions caused by bacterial, viral, and fungal infection lead to the immune dis-balance which primes T helper cells (Th2), a specific cluster of differentiation 4 (CD4) T cell differentiation. This favors the Th2-specific response by activating the inter-leukin 4/interleukin 13 (IL-4/IL-13) cytokine signaling and further activates the secretion of immunoglobulin E (IgE). IL-13 develops bronchial asthma by elevating bronchial hyperresponsiveness and enables production of immunoglobulin M (IgM) and IgE. The present study aims to target IL-13 signaling using molecular docking and understanding molecular dynamic simulation (MDS) to propose a compelling candidate to treat asthma. We developed a library of available allergic drugs (n=20) and checked the binding affinity against IL-13 protein (3BPN.pdb) through molecular docking and confirmed the best pose binding energy of –3.84 and –3.71 for epinephrine and guaifenesin, respectively. Studying the interaction of hydrogen bonds and Van der Walls, it is estimated that electrostatic energy is sufficient to interact with the active site of the IL-13 and has shown to inhibit inflammatory signaling. These computational results confirm epinephrine and guaifenesin as potential ligands showing potential inhibitory activity for IL-13 signaling. This study also suggests the designing of a new ligand and screening of a large cohort of drugs, in the future, to predict the exact mechanism to control the critical feature of asthma.

Abstract 159 | PDF Downloads 198 HTML Downloads 87 XML Downloads 11

References

1. Tanno LK, Calderon MA, Smith HE, Sanchez-Borges M, Sheikh A, Demoly P. Dissemination of definitions and concepts of allergic and hypersensitivity conditions. World Allergy Organ J [Internet]. 2016 Dec [cited 2022 Jun 8];9(1):1–9. Available from: https://waojournal.biomedcentral.com/articles/10.1186/s40413-016-0115-2

2. WAO-White-Book-on-Allergy_web.pdf [Internet]. [cited 2021 Nov 19]. Available from: https://www.worldallergy.org/UserFiles/file/WAO-White-Book-on-Allergy_web.pdf

3. Lang A, Carlsen KH, Haaland G, Devulapalli CS, Munthe-Kaas M, Mowinckel P, et al. Severe asthma in childhood: Assessed in 10 year olds in a birth cohort study. Allergy. 2008;63(8):1054–60. 10.1111/j.1398-9995.2008.01672.x

4. Slipping through the net: The reality facing patients with difficult and severe asthma. [Internet]. [cited 2021 Nov 19]. Available from: https://www.asthma.org.uk/globalassets/get-involved/external-affairs-campaigns/publications/severe-asthma-report/auk-severe-asthma-gh-final.pdf

5. Marseglia G, Merli P, Caimmi D, Licari A, Labò E, Marseglia A, et al. Nasal disease and asthma. Int J Immunopathol Pharmacol [Internet]. 2011 Oct 1 [cited 2022 Jun 8];24(4_suppl): 7–12. 10.1177/03946320110240S402

6. Georas SN, Guo J, De Fanis U, Casolaro V. T-helper cell type-2 regulation in allergic disease. Eur Respir J. 2005;26(6):1119–37. 10.1183/09031936.05.00006005

7. LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, et al. Molecular and structural basis of cytokine receptor pleiotropy in the Interleukin-4/13 system. Cell [Internet]. 2008 Jan 25 [cited 2021 Nov 19];132(2):259–72. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265076/

8. Athari SS. Targeting cell signaling in allergic asthma. Sig Transduct Target Ther [Internet]. 2019 Oct 18 [cited 2021 Nov 19];4(1):1–19. Available from: https://www.nature.com/articles/s41392-019-0079-0

9. Corren J. Role of interleukin-13 in asthma. Curr Allergy Asthma Rep. 2013;13(5):415–20. 10.1007/s11882-013-0373-9

10. Krause S, Behrends J, Borowski A, Lohrmann J, Lang S, Myrtek D, et al. Blockade of interleukin-13-mediated cell activation by a novel inhibitory antibody to human IL-13 receptor alpha1. Mol Immunol. 2006;43(11):1799–807. 10.1016/j.molimm.2005.11.001

11. Schwiebert LM, Beck LA, Stellato C, Bickel CA, Bochner BS, Schleimer RP, et al. Glucocorticosteroid inhibition of cytokine production: Relevance to antiallergic actions. J Allergy Clin Immunol. 1996;97(1 Pt 2):143–52. 10.1016/s0091-6749(96)80214-4

12. Barnes PJ, Pedersen S, Busse WW. Efficacy and safety of inhaled corticosteroids. New developments. Am J Respir Crit Care Med. 1998;157(3 Pt 2):S1–S53. 10.1164/ajrccm.157.3.157315

13. Rusconi F, Fernandes RM, Pijnenburg MWH, Grigg J. The Severe Paediatric Asthma Collaborative in Europe (SPACE) ERS Clinical Research Collaboration: Enhancing participation of children with asthma in therapeutic trials of new biologics and receptor blockers. Eur Respir J. [Internet]. 2018 Oct 1 [cited 2021 Nov 19];52(4). Available from: https://erj.ersjournals.com/content/52/4/1801665

14. Bousquet J, Mantzouranis E, Cruz AA, Aït-Khaled N, Baena-Cagnani CE, Bleecker ER, et al. Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol. 2010;126(5):926–38. 10.1016/j.jaci.2010.07.019

15. Nordlund B, Melén E, Schultz ES, Grönlund H, Hedlin G, Kull I. Prevalence of severe childhood asthma according to the WHO. Respir Med. 2014;108(8):1234–7. 10.1016/j.rmed.2014.05.015

16. Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy Immunol Pulmonol [Internet]. 2018 Jun 1 [cited 2021 Nov 19];31(2):44–55. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069590/

17. Manti S, Brown P, Perez MK, Piedimonte G. The role of neurotrophins in inflammation and allergy. Vitam Horm. 2017;104:313–41. 10.1016/bs.vh.2016.10.010

18. Ciprandi G, Marseglia GL, Castagnoli R, Valsecchi C, Tagliacarne C, Caimmi S, et al. From IgE to clinical trials of allergic rhinitis. Expert Rev Clin Immunol. 2015;11(12):1321–33. 10.1586/1744666X.2015.1086645

19. Licari A, Marseglia G, Castagnoli R, Marseglia A, Ciprandi G. The discovery and development of omalizumab for the treatment of asthma. Expert Opin Drug Discov. 2015;10(9):1033–42. 10.1517/17460441.2015.1048220

20. Carol DerSarkissian. Drugs to treat allergy symptoms [Internet]. WebMD. 2019 [cited 2021 Nov 19]. Available from: https://www.webmd.com/allergies/allergy-medications

21. Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, et al. Structural basis of signaling blockade by anti-IL-13 antibody Lebrikizumab. J Mol Biol. 2013;425(8):1330–9. 10.1016/j.jmb.2013.01.024

22. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8(3):218–30. 10.1038/nri2262

23. Fenimore PW, Frauenfelder H, McMahon BH, Young RD. Bulk-solvent and hydration-shell fluctuations, similar to α-and β-fluctuations in glasses, control protein motions and functions. PNAS [Internet]. 2004 Oct 5 [cited 2021 Nov 19];101(40):14408–13. Available from: https://www.pnas.org/content/101/40/14408

24. Kurplus M, McCammon JA. Dynamics of proteins: Elements and function. Ann Rev Biochem. [Internet]. 1983 [cited 2021 Nov 19];52(1):263–300. 10.1146/annurev.bi.52.070183.001403

25. Silva DA, Bowman GR, Sosa-Peinado A, Huang X. A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLOS Comput Biol. [Internet]. 2011 May 26 [cited 2021 Nov 19];7(5):e1002054. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002054

26. Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: Critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83. 10.1111/j.0105-2896.2004.00203.x

27. Molecular Docking Server – Ligand Protein Docking & Molecular Modeling [Internet]. [cited 2021 Nov 19]. Available from: https://www.dockingserver.com/web

28. Jatav VK, Verma R, Agarwal M. Computer-aided screening of therapeutic ligands against KLF8 protein (Homo sapiens). Int J Comput Bioinforma silico Model. 2014;3:4.

29. Karthik CS, Manukumar HM, Sandeep S, Sudarshan BL, Nagashree S, Mallesha L, et al. Development of piperazine-1-carbothioamide chitosan silver nanoparticles (P1CTit*CAgNPs) as a promising anti-inflammatory candidate: A molecular docking validation †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7md00628d. Medchemcomm [Internet]. 2018 Apr 4 [cited 2021 Nov 19];9(4):713–24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072085/

30. LARMD [Internet]. [cited 2021 Nov 19]. Available from: http://chemyang.ccnu.edu.cn/ccb/server/LARMD/

31. Al-Sawalha N, Pokkunuri I, Omoluabi O, Kim H, Thanawala VJ, Hernandez A, et al. Epinephrine activation of the β2-adrenoceptor is required for IL-13-induced mucin production in human bronchial epithelial cells. PLoS One [Internet]. 2015 Jul 10 [cited 2022 Jun 8];10(7):e0132559. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498766/

32. Zhen G, Park SW, Nguyenvu LT, Rodriguez MW, Barbeau R, Paquet AC, et al. IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007;36(2):244–53. 10.1165/rcmb.2006-0180OC

33. Zimmermann N, Rothenberg ME. The arginine-arginase balance in asthma and lung inflammation. Eur J Pharmacol. 2006;533(1–3):253–62. 10.1016/j.ejphar.2005.12.047

34. Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75(1):68–78. 10.1016/j.cyto.2015.05.014

35. Livingston E, Thomson NC, Chalmers GW. Impact of smoking on asthma therapy: A critical review of clinical evidence. Drugs. 2005;65(11):1521–36. 10.2165/00003495-200565110-00005

36. Robinson C, Holgate ST. Mast cell-dependent inflammatory mediators and their putative role in bronchial asthma. Clin Sci (Lond). 1985;68(2):103–12. 10.1042/cs0680103

37. dupixent_fpi.pdf [Internet]. [cited 2021 Nov 19]. Available from: https://www.regeneron.com/downloads/dupixent_fpi.pdf

38. Yang JF, Wang F, Chen YZ, Hao GF, Yang GF. LARMD: Integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief Bioinform. 2020;21(6):2206–18. 10.1093/bib/bbz141

39. Lee IH, Kim SY. Dynamic folding pathway models of the Trp-cage protein. Biomed Res Int. 2013;2013:973867. 10.1155/2013/973867

40. Kraulis PJ. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr [Internet]. 1991 Oct 1 [cited 2021 Nov 19];24(5):946–50. Available from: http://scripts.iucr.org/cgi-bin/paper?S0021889891004399

41. Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett [Internet]. 1997 Apr 7 [cited 2021 Nov 19];78(14): 2690–3. https://link.aps.org/doi/10.1103/PhysRevLett.78.2690

42. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics [Internet]. 2006 Nov 1 [cited 2021 Nov 19];22(21):2695–6. 10.1093/bioinformatics/btl461

43. Punnonen J, Aversa G, Cocks BG, McKenzie AN, Menon S, Zurawski G, et al. Interleukin 13 induces interleukin 4-inde-pendent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A. 1993;90(8):3730–4. 10.1073/pnas.90.8.3730

44. Horie S, Okubo Y, Hossain M, Sato E, Nomura H, Koyama S, et al. Interleukin-13 but not interleukin-4 prolongs eosinophil survival and induces eosinophil chemotaxis. Intern Med. 1997;36(3):179–85. 10.2169/internalmedicine.36.179

45. Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC, Kroegel C. Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relationship to messenger RNA expression, and promotion of cellular viability. J Immunol. 1996;157(4):1678–83. PMid: 8759755.

46. Kondo M, Tamaoki J, Takeyama K, Isono K, Kawatani K, Izumo T, et al. Elimination of IL-13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture. Allergol Int. 2006;55(3):329–36. 10.2332/allergolint.55.329

47. Bossé Y, Thompson C, Audette K, Stankova J, Rola-Pleszczynski M. Interleukin-4 and interleukin-13 enhance human bronchial smooth muscle cell proliferation. Int Arch Allergy Immunol. 2008;146(2):138–48. 10.1159/000113517

48. Chiba Y, Nakazawa S, Todoroki M, Shinozaki K, Sakai H, Misawa M. Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am J Respir Cell Mol Biol [Internet]. 2009 Feb 1 [cited 2021 Nov 19];40(2):159–67. Available from: https://www.atsjournals.org/doi/10.1165/rcmb.2008-0162OC

49. Kong-Cardoso B, Ribeiro A, Aguiar R, Pité H, Morais-Almeida M. Understanding and managing severe asthma in the context of COVID-19. Immunotargets Ther [Internet]. 2021 Dec 11 [cited 2022 Jun 8];10:419–30. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675091/

50. Ferastraoaru D, Hudes G, Jerschow E, Jariwala S, Karagic M, de Vos G, et al. Eosinophilia in asthma patients is protective against severe COVID-19 illness. J Allergy Clin Immunol Pract. 2021;9(3):1152–1162.e3. 10.1016/j.jaip.2020.12.045

51. Lommatzsch M, Stoll P, Virchow JC. COVID-19 in a patient with severe asthma treated with Omalizumab. Allergy. 2020;75(10):2705–8. 10.1111/all.14456

52. Muntean IA, Pintea I, Bocsan IC, Dobrican CT, Deleanu D. COVID-19 disease leading to chronic spontaneous urticaria exacerbation: A Romanian retrospective study. Healthcare (Basel). 2021;9(9):1144. 10.3390/healthcare9091144

53. Poddighe D, Kovzel E. Impact of anti-type 2 inflammation biologic therapy on COVID-19 clinical course and outcome. J Inflamm Res. 2021;14:6845–53. 10.2147/JIR.S345665

54. Liuzzo Scorpo M, Ferrante G, La Grutta S. An overview of asthma and COVID-19: Protective factors against SARSCOV-2 in pediatric patients. Front Pediatr. 2021;9:661206. 10.3389/fped.2021.661206