Group 2 innate lymphoid cells (ILC2s): The spotlight in asthma pathogenesis and lung tissue injury

Main Article Content

Sunusi Sadik
Yanhong Lu
Shaoxuan Zhu
Jiayu Cai
Lan Lan Mi

Keywords

asthma, cytokines, ILC2, innate lymphoid cells, type 2 inflammation

Abstract

Asthma is a heterogeneous disease with ranging etiology and severity. Asthma is a disease of chronic inflammation of the airways, with clinical symptoms of wheezing, breathlessness, cough, and chest tightness manifested as chronic fixed or variable airflow obstruction and airway hyperresponsiveness that predispose the airway epithelium to repeated injury, repair, and regeneration. In recent years, innate lymphoid cells (ILC1, ILC2, and ILC3) have been discovered. The predominant ILC type found in the lung tissue is group 2 innate lymphoid cells (ILC2s). Upon damage to the airway epithelium mediating the release of epithelial cytokines (TSLP, IL-33, and IL-25) ensued the activation of ILC2 in an antigen-independent manner. Activated ILC2 produces a significant amount of type 2 cytokines (IL-4, IL-5, IL-9, and IL-13), altogether contributing to type 2 inflammation in the airways. ILC2s are mediators of type 2 immunity for many type 2 inflammatory diseases such as asthma, since ILC2s were reported to play an important role in asthma pathogenesis. Here we discuss the role of ILC2 in the development of asthma and ILC2 effector cytokines (IL-4, IL-5, and IL-13) contributing to airway epithelial structural changes.

Abstract 158 | PDF Downloads 139 XML Downloads 0 HTML Downloads 1

References

1. GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A Systemic analysis for the Global Burden of Disease Study 2015. GBD 2015 chronic Respiratory Disease Collaborators. Lancet Respir Med. 2017 Sep;5(9):691–706.

2. Ferrante G, Antona R, Malizia V, Montalbano L, Corsello G, La Grutta S, et al. Smoke exposure as a risk factor for asthma in childhood: A review of current evidence. Allergy Asthma Proc. 2014.35.3789. https://doi.org/10.2500/aap.2014.35.3789

3. Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014 Nov;18(11):126–78. https://doi. org/10.5588/ijtld.14.0170

4. Giuliana Ferrante, Stefania La Grutta, et al. Front Pediatr. 2018;6:186. https://doi.org/10.3389/fped.2018.00186

5. Sporik R, Holgate ST, Plat-Mills TAE, Cogswell JJ. Exposure to housedust mite allergens (Der p1) and the develop-ment of asthma in childhood: A prospective study. N Engl J Med. 1990;323:502–7. https://doi.org/10.1056/NEJM19900 8233230802

6. Rosenstreich DL, Eggleston P, Kattan M, Baker D, et al. The role of cockroach allergy and exposure to cockroach allergen in caus-ing morbidity among inner-city children with asthma. N Engl J Med. 1997;336:1356–63. https://doi.org/10.1056/NEJM19 9705083361904

7. Arruda LK, Chapman MD. The role of cockroach in asthma. Curr Opinion Pulmon Med. 2001 Jan;7(1):14–9. https://doi. org/10.1097/00063198-200101000-00003

8. Arruda LK, Vailes LD, Ferriani VP, et al. Cockroach allergens and asthma. J Allergy Clin Immunol. 2001 Mar;107(3):419–28. https://doi.org/10.1067/mai.2001.112854

9. Sporik R, Squillace SP, Ingram JM, et al. Mite, cat, and cockroach exposure allergen sensitization, and asthma in children: A case-control study of three schools. Thorax. 1999 Aug;54(8):675–80. https://doi.org/10.1136/thx.54.8.675

10. Leader BP, Belanger K, Triche E, Holford T, Gold DK, Kim Y, et al. Dust mite, cockroach, cat and dog allergen concentrations in homes in homes of asthmatic children in the northeast United States: Impact of socioeconomic factors and population density. Environ Health Perspect. 2002 Apr;110(4):419–25. https://doi.org/10.1289/ehp.02110419

11. Halonen M, Stern DA, Wright AL, Taussig LM, Martinez FD. Alternaria as a major allergen for asthma in children raised in a desert environment. Am J Respir Crit Care Med. 1997 Apr;155(4):1356–61. https://doi.org/10.1164/ajrccm. 155.4.9105079

12. Halonen M, Stern DA, Lohman C, et al. Two subphenotypes of childhood asthma that differs in maternal and paternal influences on asthma risk. Am J Respir Crit Care Med. 1999 Aug;160(2):546–70. https://doi.org/10.1164/ajrccm. 160.2.9809038

13. Hekking PP, Bel EH. Developing and emerging clinical phenotypes. J Allergy Clin Immunol Pract. 2014 Nov–Dec;2(6):671– 80; quiz 681. https://doi.org/10.1016/j.jaip.2014.09.007

14. Hara K, Lijima k, Elias Mk, Seno S, Tojima I, et al. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in the respiratory mucosa. J Immunol. 2014 May 1;192(9):4032–42. 10.4049/jimmunol.1400110

15. Salter BM, Aw M, Sehmi R. The role of type 2 innate lymphoid cells in eosinophilic asthma. J Leukoc Biol. 2019;106(4):889– 901. https://doi.org/10.1002/JLB.3MR1217-497R

16. Woodruff PG, Modrek B, Choy DF, et al. T-helper 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009 Sep 1;180(5):388–95. https://doi. org/10.1164/rccm.200903-0392OC

17. Smith SG, Chen R, Kjarsgaard M, Oliveria JP, et al. Increase number of activated group 2 innate lymphoid cells in the air-way of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol. 2016 Jan;137(1):75–86.e8. https://doi.org/10.1016/j.jaci.2015.05.037

18. Kindermann M, et al. ILC2s in infectious diseases and organ-specific fibrosis. Semin Immunopathol. 2018 Jul; 40(4):379–392. https://doi.org/10.1007/s00281-018-0677-x

19. Bush A. Pathophysiological mechanism of asthma. Front Pediatr. 2019;7:68. https://doi.org/10.3389/fped.2019.00068

20. Lloyd Clare M, Hessel EM. Function of T cells in asthma: More than just TH2 cells. Nat Rev Immunol. 2010 Dec;10(12):10. https://doi.org/10.1038/nri2870

21. Moqbel R, et al. Allergy, asthma, and inflammation: Which inflammatory cell type is more important? Allergy Asthma Clin Immunol. 2008;4(4):150–156. https://doi. org/10.1186/1710-1492-4-4-150

22. Han Gao, et al. Pathological roles of neutrophil-mediated inflammation in asthma and its potential for therapy as a target. J. Immunol Res. 2017;2017:3743048. https://doi. org/10.1155/2017/3743048

23. Bousquet J, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–9. https://doi.org/10.1056/ NEJM199010113231505

24. Wang Y, et al. Role of airway epithelial cells in the development of asthma and allergic rhinitis. Respir Med. 2008 Jul;102(7):949–55. https://doi.org/10.1016/j.rmed.2008.01.017

25. Balhara J, Gounni AS. The alveolar macrophages in asthma: A double-edge sword. Mucosal Immunol. 2012 Nov;5(6):605–9. https://doi.org/10.1038/mi.2012.74

26. Kim JH, et al. Role of natural killer cells in airway inflammation. Allergy Asthma Immunol Res. 2018 Sep;10(5):448–56. https://doi.org/10.4168/aair.2018.10.5.448

27. Bernink JH, et al. The role of ILC2s in pathology of type 2 inflammatory diseases. Curr Opin Immunol. 2014 Dec;31:115– 20. https://doi.org/10.1016/j.coi.2014.10.007

28. Inflammation and host response to injury a multi-disciplinary research program. Blue Grant; 2001.

29. Rackemann FM. A working classification of asthma. Am J Med. 1947;3:601–6. https://doi.org/10.1016/0002-9343(47)90204-0

30. Evans CK, et al. Mucus hypersecretion in asthma: Causes and effects. Curr Opin Pulm Med. 2009 Jan;15(1):4–11. https://doi. org/10.1097/MCP.0b013e32831da8d3

31. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013 Sep;144(3):1026–32. DOI: 10.1378/chest.12-3073

32. Georas SN,Rezaee F. Epithelial barrier function: At the front-line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014 Sep;134(3):509–20. https://doi. org/10.1016/j.jaci.2014.05.049

33. Vignola AM, et al. New evidence of inflammation in asthma. Thorax. 2000 Oct;55 Suppl 2;S52–S60. https://doi.org/10.1136/ thorax.55.suppl_2.S59

34. Liu C, Zhang X, et al. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (review). Mol Med Rep. 2018 May;17(5):6935–41. https://doi.org/10.3892/ mmr.2018.8739

35. Ishmael FT. The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc. 2011 Nov;111(11, Supp l7):S11– 7. PMID: 22162373

36. Salimi M, Ogg G. Innate lymphoid cells and the skin. BMC Dermatol. 2014 Nov 26;14:18. https://doi.org/10.1186/ 1471-5945-14-18

37. Walker JA, et al. Innate lymphoid cells – How did we miss them? Nat Rev Immunol. 2013 Feb;13(2):75–87. https://doi.org/10.1038/ nri3349

38. Spits H, et al. Innate lymphoid cells – A proposal for uniform nomenclature. Nat Rev Immunol. 2013 Feb;13(2):145–9. https://doi.org/10.1038/nri3365

39. Tait Wojno ED, Beamer CA. Isolation and identification of innate lymphoid cells (ILCs) for immunotoxicity test-ing. Methods Mol Biol. 2018;1803:353–70. https://doi. org/10.1007/978-1-4939-8549-4_21

40. Halim TY. Group 2 innate lymphoid cells in disease. Int Immunol. 2016 Jan;28(1):13–22. https://doi.org/10.1093/intimm/ dxv050

41. Huang Y, Paul WE. Inflammatory group 2 innate lymphoid cells. Int Immunol. 2016 Jan;28(1):23–28. https://doi.org/10.1093/ intimm/dxv044

42. Spooner CJ, Lesch J, et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol. 2013 Dec;14(12):1229–36. https://doi.org/10.1038/ni.2743

43. Tian J, et al. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol. 2020 Jan;78:106032. https://doi. org/10.1016/j.intimp.2019.106032

44. Xiong J, et al. Functions of Group 2 innate lymphoid cells in the tumor microenvironment. Front Immunol. 2019;10:1615. https://doi.org/10.3389/fimmu.2019.01615

45. Mjosberg J, et al. The transcription factor GATA3 is essential for the function of human type 2 lymphoid cells. Immunity. 2012 Oct 19;37(4):649–59. https://doi.org/10.1016/j. immuni.2012.08.015

46. Hoyler T, et al. The transcription factor GATA3 controls cell fate and maintenance of type innate lymphoid cells. Immunity. 2012 Oct 19;37(4):634–48. https://doi.org/10.1016/j. immuni.2012.06.020

47. Lei AH, Xiao Q, et al. ICAM-1 controls development and function of ILC2. J Exp Med. 2018 Aug 6;215(8):2157–74. 10.1084/ jem.20172359

48. Wong SH, et al. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol. 2012;13:229–36. https:// doi.org/10.1038/ni.2208

49. Walker JA, et al. Development and function of group 2 innate lymphoid cells. Curr Opin Immunol. 2013 Apr;25(2):148–55. https://doi.org/10.1016/j.coi.2013.02.010

50. Mielke LA, et al. TCF-1 controls ILC2 and NKp46+ ROR gammat+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol. 2013 Oct 15;191(8):438391. https:// doi.org/10.4049/jimmunol.1301228

51. Wang L, et al. TGF-beta induces ST2 and programs ILC2 development. Nat Commun. 2020 Jan 7;11(1):35.

52. Li Q, Li D, Zhang X, et al. E3 ligase VHL promotes Group 2 innate lymphoid cell maturation and function via glycolysis intubation and induction of interleukin-33 receptor. Immunity. 2018 Feb 20;48(2):258-270.e5. doi: 10.1016/j. immuni.2017.12.013. Epub 2018 Feb 13.

53. Drake LY, Iijima K, Kita H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 2014 Oct; 69(10):1300–7. https://doi.org/10.1111/ all.12446

54. Turner J-E, et al. IL-9-mediated survival of type 2 innate lymphoid cells promote damage control in helminth-induced lung inflammation. J Exp Med. 2013 Dec 16;210(13):2951–65. https://doi.org/10.1084/jem.20130071

55. Elia D. Tait Wojno. Innate lymphoid cells: An emerging population in type 2 inflammation. Cell Host Microbe. 2012 Oct 18; 12(4):445–457. doi: 10.1016/j.chom.2012.10.003

56. Pishdadian A, et al. Type 2 innate lymphoid cells: Friends or foes role in airway allergic inflammation and asthma. J Allergy (Cairo). 2012;2012:130937. https://doi.org/10.1155/2012/130937

57. Lai DM, Shu Q, Fan J. The origin and role of innate lymphoid cells in the lung. Mil Med Res. 2016 Aug 19;3:25. https://doi. org/10.1186/s40779-016-0093-2

58. Gasteiger G, Rudensky AY. Interactions between innate and adaptive lymphocytes. Nat Rev Immunol. 2014 Sep;14(9):131– 9. https://doi.org/10.1038/nri3726

59. Karagiannis F, Wilhelm C. More is less: IL-9 in the resolution of inflammation. Immunity. 2017 Sep 19;47(3):403–405.

60. Helfrich S, et al. Group 2 innate lymphoid cells in respiratory allergic inflammation. Front Immunol. 2019 Jun 7;10:930. https://doi.org/10.3389/fimmu.2019.00930

61. Kato A. Group innate lymphoid cells in airway disease. Chest. 2019 Jul;156(1):141–9. https://doi.org/10.1016/j. chest.2019.04.101

62. Geremia A, et al. Innate lymphoid cells in intestinal inflammation. Front Immunol. 2017 Oct 13;8:1296. https://doi. org/10.3389/fimmu.2017.01296

63. Loser S, Smith KA, et al. Innate lymphoid cells in Helminths infections – Obligatory or accessory? Front Immunol. 2019 Apr 10;10:620. https://doi.org/10.3389/fimmu.2019.00620

64. Fan D, et al. Allergen-dependent differences in ILC2s frequencies in patients with allergic rhinitis. Allergic Asthma Immunol Res. 2016 May;8(3):216–222. https://doi.org/10.4168/ aair.2016.8.3.216

65. Lambrecht BN, Hammad H. Allergens and the airway epithelium response. J Allergy Clin Immunol. 2014 Sep;134(3):499– 507. https://doi.org/10.1016/j.jaci.2014.06.036

66. Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in the pathogenesis of asthma. Allergol Int. 2018 Jan;67(1):12–17. https://doi.org/10.1016/j.alit.2017.08.011

67. Karta MR, Broide DH, Doherty TA. Insight into Group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep. 2016 Jan;16(1):8. Curr Allergy Asthma Rep. 2016 Jan;16(1):8. doi: 10.1007/s11882-015-0581-6.

68. Brusselle GG, et al. Eosinophils in the spotlight: Eosinophilic airway inflammation in non-allergic asthma. Nat Med. 2013 Aug;19(8):977–9. https://doi.org/10.1038/nm.3300

69. Lincona-Limon P, Kim LK, Palm NW, et al. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. 2013 Jun;14(6):536–42. Nat Immunol. 2013 Jun;14(6):536-42. doi: 10.1038/ni.2617.

70. He, R, et al. TSLP acts on infiltrating effector T cells to derived allergic skin inflammation. Proc. Natl. Acod. Sci (USA). 2008;105:11875–80. https://doi.org/10.1073/pnas.0801532105

71. Chiba Y, et al. Interleukin-13 augments bronchial smooth muscle contractility with an upregulation of Rho A protein. Am J Respir Cell Mol Biol. 2009 Feb;40(2):15967. https://doi. org/10.1165/rcmb.2008-0162OC

72. Xu H, et al. Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis. Immunol Cell Biol. 2018 Oct;96(9):935–47. https://doi. org/10.1111/imcb.12159

73. Matsushita K, et al. Regnase-1 degradation is crucial for IL-33-and IL-25-mediated ILC2 activation. JCI Insight. 2020 Feb 27;5(4).pii:e131480. https://doi.org/10.1172/jci.insight.131480

74. Doherty TA, Broide DH. Pathways to limit Group 2 innate lymphoid cell activation. J Allergy Clin Immunol. 2017 May;139(5):1465–67. https://doi.org/10.1016/j.jaci.2016.12.003

75. Kubo M. Innate and adaptive type immunity in lung allergic inflammation. Immunol Rev. 2017 Jul;278(1):162–72. doi: 10.1111/imr.12557

76. Bouchery T, et al. ILC2s-trailblazers in the host response against intestinal helminths. Front Immunol. 2019 Apr 4;10:623. doi: 10.3389/fimmu.2019.00623

77. Garcia G, et al. Anti-interleukin-5 therapy in severe asthma. Eur Respir Rev. 2013 Sep1;22(129):251–7. https://doi.org/10.1183/ 09059180.00004013

78. Real EL, Lockey RF. Interleukin-13 signaling and its role in asthma. World Allergy Organ J. 2011 Mar;4(3):54–64. https:// doi.org/10.1097/WOX.0b013e31821188e0

79. Martinez-Gonzalez I, et al. Lung ILC2s link innate and adaptive responses in allergic inflammation. Trends Immunol. 2013 Mar;36(3):189–95. https://doi.org/10.1016/j.it.2015.01.005

80. Hauber H-P, Hamid Q. The role of interleukin-9 in asthma. Allergol Int 2005;54:71–78. https://doi.org/10.2332/ allergolint.54.71

81. Karagiannis F, et al. More is less: IL-9 in the resolution of inflammation. Immunity. 2017 Sep19;47(3):403–5. https://doi. org/10.1016/j.immuni.2017.09.004

82. Starkey MR, et al. Pulmonary group 2 innate lymphoid cells: Surprises and changes. Mucosal Immunol. 2019 Mar;12(2):299– 311. https://doi.org/10.1038/s41385-018-0130-4

83. Rauber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med. 2017 Aug;23(8):938–44. DOI: 10.1038/nm.4373

84. Steinke JW, Borish L. Th 2 cytokines and asthma-interleukin-4: Its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res. 2001;2(2):66–70. https://doi.org/10.1186/rr40

85. Kostikas K, et al. Blood eosinophils as biomarkers to drive treatment choices in asthma and COPD. Curr Drug Targets. 2018;19(16):1882–1896. https://doi.org/10.2174/1389450119666 180212120012

86. Bakakos A, et al. Severe eosinophilic asthma. J Clin Med. 2019 Sep;8(9):1375. https://doi.org/10.3390/jcm8091375

87. Nagakumar P, Puttar F, et al. Pulmonary type 2 innate lymphoid cells in pediatric severe asthma: Phenotype and response to steroids. Eur Respir J. 2019 Aug 29;54(2). https:// doi.org/10.1183/13993003.01809-2018

88. Liu S, Verma M, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol. 2018 Jan;141(1):257–68. https://doi.org/10.1016/j. jaci.2017.03.032

89. Verma M, Liu S, et al. Experimental asthma persist in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9+ and IL-13+ type 2 innate lymphoid cell-subpopulations. J Allergy Clin Immunol. 2018 Sep;142(3):793–803. https://doi.org/10.1016/j. jaci.2017.10.020

90. Sugita K, Steer CA, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol. 2018 Jan;141(1):300–10. https://doi.org/10.1016/j. jaci.2017.02.038

91. Clinical Trials.gov. Type 2 innate lymphoid cells in severe pediatric asthma (CLASSE). Identifier: NCT03784781. Available at: https://clinicaltrials.gov/ct2/show/NCT03784781

92. Jia Y, Fang X, et al. IL-13+ type 2 innate lymphoid cells correlate with asthma control status and treatment response. Am J Respir Cell Mol Biol. 2016 Nov;55(5):675–863. https://doi. org/10.1165/rcmb.2016-0099OC

93. Lee TJ, Fu CH, et al. Impact of chronic rhinosinusitis on severe asthma patients. PLoS One. 2017 Feb 15;12(2):e0171047. https://doi.org/10.1371/journal.pone.0171047

94. Larsson K. Monitoring airway remodeling in asthma. Clin Respir J. 2010 May;4 (Suppl 1):35–40. https://doi. org/10.1111/j.1752-699X.2010.00195.x

95. Starkey MR, et al. Pulmonary group 2 innate lymphoid cells: Surprises and challenges. Mucosal Immunol. 2019 Mar;12(2):299–311. https://doi.org/10.1038/s41385-018-0130-4

96. McKenzie AN. Type 2 innate lymphoid cells in asthma and allergy. Ann Am Thorac Soc. 2014 Dec;11(Suppl 5):5263–70. doi: 10.1513/AnnalsATS.201403-097AW

97. Dahlgren MW, et al. All along the watch tower: Group 2 innate lymphoid cells in allergic responses. Curr Opin Immunol. 2018 Oct;54:13–19. https://doi.org/10.1016/j.coi.2018.05.008

98. Doherty TA, et al. Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int. 2019 Jan;68(1):9– 16. https://doi.org/10.1007/s42411-019-0059-y

99. Broide DH. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. J Allergy Clin Immunol. 2008 Mar, 121(3):560–70. https://doi.org/10.1016/j. jaci.2008.01.031

100. Cheng H, et al. Guards at the gate physiological and pathological roles of tissue resident innate lymphoid cells in the lung. Protein Cell. 2017 Dec;8(12):932. https://doi.org/10.1007/ s13238-017-0399-1

101. Monticelli LA, et al. Innate lymphoid cells: Critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol. 2012 Jun;24(3):284–289. https://doi. org/10.1016/j.coi.2012.03.012

102. Kristein F, et al. Role of IL-4 receptor alpha-positive CD4+ T cells in chronic airway hyper-responsiveness. J Allergen Clin Immunol. 2016 Jun;137(6):1852–62. https://doi.org/10.1016/j. jaci.2015.10.036