A review of aeropalynology research in Nigeria: implication on public health and environmental research collaboration

Main Article Content

Linus Bashie Ajikah
Olugbenga Shadrak Alebiosu
Emuobosa Akpo Orijemie
Dough Onah https://orcid.org/0000-0002-5114-9142

Keywords

aerospora, allergic, epidemiological, pollinosis, susceptible

Abstract

Background Aeropalynology is a branch of palynology that studies the content of atmospheric pollen grains and spores. The amount, concentration, and distribution of these aerospora are influenced by the seasonal flowering of parent plants and variations in climatic conditions as well as local and regional variabilities. Atmospheric pollen grains and spores are diverse and have been identified as major biological particles that trigger immune cells to release inflammatory chemical mediators, inducing respiratory-linked and allergic conditions, such as pollinosis, among susceptible individuals.


Objective The burden of these allergic conditions on patients, families, healthcare systems, and governments has risen globally, thereby affecting developing countries, including Nigeria, wherein the financial and infrastructural institutions are not effective enough to mitigate these challenges. Avoidance of allergenic aerospora is an effective mode of addressing pollinosis with its associated conditions. However, there is a need to ascertain the atmospheric quantity, diversity, and pattern of occurrence of allergenic pollen/spores.


Results In this paper, we reviewed published articles on aeropalynology in Nigeria with attention to the design and duration of the study and the used equipment. We further investigated whether identification and quantification of allergy-causing palynomorphs was part of published articles’ foci.


Conclusion The availability of such data/information is crucial for reducing epidemiological uncertainties, enhancing the diagnosis of allergic conditions, and securing a robust set of mitigation strategies and/or effective treatment of these conditions in Nigeria.

Abstract 180 | PDF Downloads 75 HTML Downloads 3 XML Downloads 6

References

1. Poüschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev. 2015;115(10):4440-75. 10.1021/cr500487s

2. Steffen W, Crutzen PJ, Mc.Neill JR. The anthropocene: Are humans now overwhelming the great forces of nature? Ambio. 2007;36(8):614–21. 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2

3. Foley SF, Gronenborn D, Andreae MO, et al. The palaeoanthropocene—The beginnings of anthropogenic environmental change. Anthropocene. 2013;3:83–88. 10.1016/j.ancene.2013.11.002

4. Lewis SL, Maslin MA. Defining the anthropocene. Nature. 2015;519(7542):171–80. 10.1038/nature14258

5. Ajikah L, Ogundipe OT, Bamgboye O. Palynological survey of airborne pollen and spores in the University of Lagos, Akoka campus, southwestern Nigeria. IFE J Sci. 2015;17(3):643–55.

6. Singh AB, Dahiya P. Aerobiological research on pollen and fungi in India during last fifty years: An overview. J Allergy Clin Immunol. 2008;22:27–38.

7. Reid CE, Gamble JL. Aeroallergens, allergic disease, and climate change: Impacts and adaptation. Eco Health. 2009;6(3):458-70. 10.1007/s10393-009-0261-x

8. D’Amato G, Baena-Cagnani CE, Cecchi L, et al. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidscip Respir Med. 2013;8(1):12. 10.1186/2049-6958-8-12

9. Ziska LH, Beggs PJ. Anthropogenic climate change and allergen exposure: The role of plant biology. J Allergy Clin Immunol. 2012;129(1):27–32. 10.1016/j.jaci.2011.10.032

10. Kaplan A. Airborne pollen grains in Zonguldak, Turkey, 2001–2002. Acta Botanica Sinica. 2004;46:668–74.

11. Ezikanyi DN, Ogundipe OT, Adeiga AA. Allergenic potential of two species of Poaceae: Panicum maximum Jacq and Sacciolepis africana CE. Hub pollen protein in albino mice. Int J Environ Sci. 2017;6(10):1–5.

12. Njokuocha RC. Airborne pollen grains in Nsukka, Nigeria. Grana. 2006;45(1):73–80. 10.1080/00173130600555797

13. Adeonipekun PA. Comparative aeropalynology of Ota, Nigeria. J Ecol Nat Environ (JENE). 2012;4(12):314–20. 10.5897/JENE12.031

14. Tauber R. A static non-over load pollen collector. New Phytol. 1974;73:359–69. 10.1111/j.1469-8137.1974.tb04770.x

15. Giesecke T, Fontana SL, Van der Knaap W, Pardoe HS, Pidek IA. From early pollen trapping experiments to the pollen monitoring programme. Veg Hist Archaeobot. 2010;19:247–58. 10.1007/s00334-010-0261-3

16. Peck RM. Efficiency test on the Tauber trap used as a pollen sampler in turbulent water flow. New Phytol. 1972;71:187–98. 10.1111/j.1469-8137.1972.tb04827.x

17. Krzywinski K. The Tauber pollen trap, a discussion of its usefulness in pollen deposition studies. Grana. 1977;16(3):147–8. 10.1080/00173134.1977.11864651

18. Levetin S, Rogers CA, Hall A. Comparison of pollen sampling with a Burkard spore trap and a Tauber trap in a warm temperate climate. Grana. 2000;39(6):294–302. 10.1080/00173130052504333

19. Levetin E. Use of the Burkard spore trap. Tulsa, OK: The University of Tulsa; NA.

20. Agwu COC, Osibe EE. Airborne palynomorphs of Nsukka during the months of February–April, 1990. Nigerian J Bot. 1992;5:177–85.

21. Agwu COC, Njokuocha RC, Mezue O. The study of airborne pollen and spores circulating at “head level” in Nsukka environment. Bio-Research. 2004;2(2):7–14. 10.4314/br.v2i2.28552

22. Njokuocha RC, Osayi EE. Airborne pollen and spore survey in relation to allergy and plant pathogens in Nsukka, Nigeria. Bio-Research. 2005;3(1):77–84. 10.4314/br.v3i1.28575

23. Adekanmbi OH, Ogundipe OT. Aeropalynological studies of the University of Lagos campus, Nigeria. Notulae Scientia Biol. 2010;2(4):34–9. 10.15835/nsb245393

24. Adeonipekun PA, John M. Palynological investigation of haze dust in Ayetoro-Itele Ota, Southwest Nigeria. J Ecol Nat Environ. 2011;3(14):455–60. 10.5897/JENE11.082

25. Essien BC, Agwu COC. Aeropalynological study of Anyigba, Kogi State, Nigeria. Stand Scient Res Essays. 2013;1(13):347–51.

26. Adeniyi TA, Adeonipekun PA, Olowokudejo JD, Akande IS. Airborne pollen records of Shomolu local government area in Lagos State. Notulae Scientia Biologicae. 2014;6(4):428–32. 10.15835/nsb649355; 10.15835/nsb.6.4.9355

27. Adekanmbi OH, Alebiosu OS, Adeiga AA. Aerofloral investigation and allergenic potentials of two dominant airborne pollen types at selected sites in south-western Nigeria. Aerobiologia. 2019 Mar;35(1):doi:10.1007/s10453-018-9533-7

28. Alebiosu OS, Adekanmbi OH, Nodza GI, Ogundipe OT. Aeropalynological study of two selected locations in north-central Nigeria. Aerobiologia. 2018;34:187–202. 10.1007/s10453-017-9506-2

29. Ezike DN, Nnamani CV, Ogundipe OT, Adekanmbi OH. Airborne pollen and fungal spores in Garki, Abuja (north-central Nigeria). Aerobiologia. 2016;32(4):697–707. 10.1007/s10453-016-9443-5

30. Orijemie EA, Israel I. Using palynomorphs to trace the travel history of vehicles. Aerobiologia. 2019;35:497–510. 10.1007/s10453-019-09577-z

31. Ajao A. Harnessing Nigeria’s biological diversity in an integrated approach to national development. JORIND. 2012;10(2):40–5.

32. Keay RWJ. An outline of Nigerian vegetation. 2nd ed. Lagos, Nigeria: Government Printer; 1959; pp. 1–46.

33. Sowunmi MA. Pollen of Nigerian plants II. Grana. 1995;34(2):120–41. 10.1080/00173139509430002

34. Adekanmbi OH, Ogundipe OT. Pollen grains of Lagos lagoon swamp and hinter-land vegetation-1. Intern J Bot. 2009;5:270–8. 10.3923/ijb.2009.270.278

35. Sowunmi MA. Pollen morphology of the Palmae and its bearing on taxonomy. Rev Palaeobot Palynol. 1972;13(1):1–80. 10.1016/0034-6667(72)90044-9

36. Jeffrey C. A note on pollen morphology in Cucurbitaceae. Kew Bull. 1964;17(3):473–7. 10.2307/4113823

37. Al-Anbari AK, Barusrux S, Pornpongrungrueng P, Theerakulpisut P. Pollen grain morphology of citrus (Rutaceae) in Iraq. In: International conference on plant, marine and environmental sciences. 2015. 10.15242/IICBE.C0115048.

38. Conejero L, Hagaki Y, Baeza MC, Varela-Nieto I, Zubeldia JM. Pollen-induced airway inflammation, hyper-responsiveness and apoptosis in a murine model of allergy. Clin Exp Allergy. 2007;37:331–8. 10.1111/j.1365-2222.2007.02660.x

39. Acharya PJ. Skin test response to some inhalant allergens in patients of nasobronchial allergy from Andhra Pradesh. Asp Allergy Appl Immunol. 1980;15:49–52.

40. Agashe SN, Anand P. Immediate type hypersensitivity to common pollen and molds in Bangalore city. Asp Allergy Appl Immunol. 1982;15:49–52.

41. Singh BP, Singh AB, Nair PKK, Gangal SV. Survey of airborne pollen and fungal spores at Dehradun, India. Ann Allergy. 1987;59:229–34.

42. Karmakar PR, Das A, Chatterjee BP. Placebo-controlled immunotherapy with Cocos nucifera pollen extract. Intern Arch Allergy Appl Immunol. 1994;103:194–201. 10.1159/000236627

43. Caillaud D, Thibaudon M, Martin S, Segala C, Besancenot JP, Clot B, et al. J Invest Allergol Clin Immunol. 2014;24(4):177–83.

44. Galant S, Berger W, Gillman S, Goldsobel A. Prevalence of sensitization to aeroallergens in California patients with respiratory allergy. Ann Allergy Asthma Immunol. 2010;81:203–10. 10.1016/S1081-1206(10)62813-X

45. Ščevkova J, Dušička J, Hrubiško M, Mičieta K. Influence of airborne pollen counts and length of pollen season length of selected allergenic plants on the concentration of sIgE antibodies on the population of Bratislava, Slovakia. Annals of Agricul Environ Med. 2015;22(3):451–5. 10.5604/12321966.1167712

46. Bastl K, Kmenta M, Pessi A, Prank M, Saarto A, Sofiev M, et al. First comparison of symptom data with allergen content (Bet v1 and Phl p5 measurements) and pollen data from four European regions during 2009–2011. Sci Total Environ. 2016;548:229–35. 10.1016/j.scitotenv.2016.01.014

47. Hirst JM. An automatic volumetric spore trap. Ann Appl Biol. 1952;39:257–65. 10.1111/j.1744-7348.1952.tb00904.x

48. Buters J. Pollen allergens and geographical factors. In: Akdis C., Agashe I, editors. Global atlas of allergy. Zurich, Switzerland: European Academy of Allergy and Clinical Immunology; 2014, pp. 36–7.

49. Belmonte J, Canela M, Guardia RA. Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiologia. 2000;16:177–85. 10.1023/A:1007649427549; 10.1023/A:1007628214350

50. Frenz DA. The effect of wind speed on pollen and spore counts collected with the Rotorod sampler and Burkard spore trap. Ann Allergy Asthma Immunol. 2000;85:392–4. 10.1016/S1081-1206(10)62553-7

51. Okamoto Y, Horiguchi S, Yamamoto H, Yonekura S, Hanazawa T. Present situation of cedar pollinosis in Japan and its immune responses. Allergol Intern. 2009;58:155–62. 10.2332/allergolint.08-RAI-0074

52. Orlandi F, Oteros J, Aguilera F, Ben-Dhiab A, Msallem M, Fornaciari M. Design of a down-scaling method to estimate continuous data from discrete pollen monitoring in Tunisia. Environ Scient Proc Impacts. 2014;16:1716–25. 10.1039/C4EM00153B

53. Faegri K, Iversen J. Textbook of pollen analysis. Faegri K, Kaland PE, and Krzywinski K, editors. New York, NY: John Wiley; 1989, 328 pp.

54. Berman D. Pollen monitoring in South Africa. Curr Allergy Clin Immunol. 2007;20(4):184–7.

55. Taketomi EA, Sopelete MC, Moreira PFS, Vieira FAM. Pollen allergic disease: Pollens and its major allergens. Revista Brasileira Otorrinolaringol. 2006;72(4):562–7. 10.1590/S0034-72992006000400020

56. Adeniyi TA, Adeonipekun PA, Olowokudejo JD, Akande IS. Allergenicity of dominant aeropollen in Nigeria: Part I. Curr Allergy Clin Immunol. 2017;30(4):264–9.

57. Schäppi GF, Taylor PE, Pain MC, Cameron PA, Dent AW, Staff IA, et al. Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: Implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens. Clin Exp. 1999;29(5):633–41. 10.1046/j.1365-2222.1999.00567.x

58. Luo W, Huang H, Zheng P, Wei N, Luo J, Sun B, et al. Major grass pollen allergens and components detected in a southern Chinese cohort of patients with allergic rhinitis and/or asthma. Mol Immunol. 2016;78:105–12. 10.1016/j.molimm.2016.08.013

59. Walter OJ, Adekanmbi OH, Ajikah LB. Palynological analysis of spider webs from Lagos State, southwestern Nigeria. Intern J Bot Stud. 2019;4(3):82–7.

60. Adeniyi TA, Adeonipekun PA, Olowokedujo JD, Akande IS. Allergenicity of dominant aeropollen in Nigeria. (Part 11). Curr Allergy Clin Immunol. 2018;31(3):178–83.

61. Rogers CA. Application of aeropalynological principles in palaeoecology. Rev Palaeobot Palynol. 1993;79(1–2):133–40. 10.1016/0034-6667(93)90043-T

62. Newnham RM. Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia. 1999;15:87–94. 10.1023/A:1007595615115

63. Ige EO, Essien BC. The applications of pollen analysis in environmental monitoring in Akoko north-east local government area of Ondo State, Nigeria. GSC Biol Pharm Sci. 2019;8(1):64–77. 10.30574/gscbps.2019.8.1.0113

64. Minder P. First results for bioaerosol monitoring by the new Swisens Poleno. Intern Aerobiol Newslet. 2019;85:9.

65. Buters J, Oteros J, Weber A, Heinze S, Kutzora S, Herr C. The Bavarian network of automatic pollen monitoring station ePIN went online. Aerobiol Newslet. 2019;85:7–8.