IFN-γ cocultured mesenchymal stem cells promote substantial immunomodulatory effects in mice models of allergic asthma
Main Article Content
Keywords
stem cell, immune response, allergy, lung, biomedicine
Abstract
Asthma is a debilitating lung disease characterized by airway inflammation and airflow obstruction. Immune cells, particularly T helper 2 (Th2) lymphocytes, are central players in the pathogenesis of asthma and mesenchymal stem cells (MSCs) have shown the capability of softening pathological inflammatory responses in asthma. Hence, we researched the immunopathologic effects MSCs cocultured with interferon (IFN)-γ, the main Th1 cytokine, in asthmatic mice. After isolation, MSCs were cocultured with IFN-γ and administered to asthmatic mice. Subsequent analyses included enumeration of broncho-alveolar lavage (BAL) fluid’s inflammatory cells, determination of the levels of immunoglobulin E (IgE), leukotrienes (LTs), cytokines, chemokines, and histopathology assessment. The administration of IFN-γ-cocultured MSCs reduced the percentage of eosinophils in the BAL fluid and levels of IgE, LTs, cytokines, and chemokines. Also, there was a decrease in the eosinophilic infiltration of perivascular areas and periairways. IFN-γ cocultured MSCs could modulate immune responses and harness pathological events in allergic asthma.
References
2 Athari SM, Nasab EM, Athari SS. Study effect of Ocimum basilicum seeds on mucus production and cytokine gene expression in allergic asthma mice model. Rev Fr Allergol. 2018;58(7):489–93. 10.1016/j.reval.2018.08.003
3 Lankarani KB, Honarvar B, Athari SS. The mechanisms underlying helicobacter pylori-mediated protection against allergic asthma. Tanaffos. 2017;16(4):251–9.
4 Qian L, Nasab EM, Athari SM, Athari SS. Mitochondria signaling pathways in allergic asthma. J Investig Med. 2022;70(4):863–82. 10.1136/jim-2021-002098
5 Nasab EM, Athari SM, Motlagh B, Athari SS. Effects of oral administration of Ocimum basilicum on goblet cell hyperplasia and upstream cytokine gene expression in allergic asthma. Rev Fr Allergol. 2020;60:64–8. 10.1016/j.reval.2019.02.226
6 Arora P, Athari SS, Nainwal LM. Piperine attenuates production of inflammatory biomarkers, oxidative stress and neutrophils in lungs of cigarette smoke-exposed experimental mice. Food Biosci. 2022;49:101909. 10.1016/j.fbio.2022.101909
7 Nasab EM, Makoei RH, Athari HA, Athari SS. IL-33/ST2 pathway as upper-hand of inflammation in allergic asthma contributes as predictive biomarker in heart failure. ESC Heart Fail. 2022;9(6):3785–90. 10.1002/ehf2.14111
8 Jiang J, Nasab EM, Athari SM, Athari SS. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir Physiol Neurobiol. 2021;286:103614. 10.1016/j.resp.2020.103614
9 Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G, Athari SS. Oral administration of acrylamide worsens the inflammatory responses in the airways of asthmatic mice through agitation of oxidative stress in the lungs. Front Immunol. 2020;11:1940. 10.3389/fimmu.2020.01940
10 Mirershadi F, Ahmadi M, Rezabakhsh A, Rajabi H, Rahbarghazi R, Keyhanmanesh R. Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Res Ther. 2020;11(1):400. 10.1186/s13287-020-01921-2
11 Huang M, Nasab EM, Athari SS. Immunoregulatory effect of mesenchymal stem cell via mitochondria signaling pathways in allergic asthma. Saudi J Biol Sci. 2021;28:6957–62. 10.1016/j.sjbs.2021.07.071
12 Bao X-H, Gao F, Athari SS, Wang H. Immunomodulatory effect of IL-35 gene-transfected mesenchymal stem cells on allergic asthma. Fundam Clin Pharmacol. 2023;37(1):116–24. 10.1111/fcp.12823.
13 Hou C, Sun F, Liang Y, Nasab EM, Athari SS. Effect of transduced mesenchymal stem cells with IL-10 gene on control of allergic asthma. Allergol Immunopathol (Madr). 2023;51(2):45–51. 10.15586/aei.v51i2.789
14 Yang X, Du J, Xu X, Xu C, Song W. IFN-γ-secreting-mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway. J Immunol Res. 2014:2014:318098:. 10.1155/2014/318098
15 Genc D, Zibandeh N, Nain E, Arı˘g Ü, Göker K, Aydıner EK, et al. IFN-γ stimulation of dental follicle mesenchymal stem cells modulates immune response of CD4+ T lymphocytes in Der p1+ asthmatic patients in vitro. Allergol Immunopathol (Madr). 2019;47(5):467–76. 10.1016/j.aller.2018.12.005
16 Kim DS, Jang IK, Lee MW, Ko YJ, Lee D-H, Lee JW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by interferon-γ. EBioMedicine. 2018;28:261–73. 10.1016/j.ebiom.2018.01.002
17 Wobma HM, Kanai M, Ma SP, Shih Y, Li HW, Duran-Struuck R, et al. Dual IFN-γ/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. J Immunol Regen Med. 2018;1:45–56. 10.1016/j.regen.2018.01.001
18 Bayati F, Valadi M, Ahmadi A, Najafi F, Ansaripour B, Sharif-Paghaleh E. Evaluation of immunomodulatory effects of co-culture or supernatant of dexamethasone or IFN-γ-treated adipose-derived mesenchymal stem cells on spleen mononuclear cells. Eur Cytokine Netw. 2022;33(3):70–8. 10.1684/ecn.2022.0482
19 Vizoso FJ, Eiro N, Costa L, Esparza P, Landin M, Diaz-Rodriguez P, et al. Mesenchymal stem cells in homeostasis and systemic diseases: Hypothesis, evidences, and therapeutic opportunities. Int J Mol Sci. 2019;20(15):3738. 10.3390/ijms20153738
20 Mosna F, Sensebe L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: A user’s guide. Stem Cells Dev. 2010;19(10):1449–70. 10.1089/scd.2010.0140
21 Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455–63. 10.5966/sctm.2012-0184
22 Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704. 10.3892/ijmm.2014.1821
23 Li Y, Qu T, Tian L, Han T, Jin Y, Wang Y. Human placenta mesenchymal stem cells suppress airway inflammation in asthmatic rats by modulating notch signaling. Mol Med Rep. 2018;17(4):5336–43. 10.3892/mmr.2018.8462
24 Li Y, Li H, Cao Y, Wu F, Ma W, Wang Y, et al. Placenta-derived mesenchymal stem cells improve airway hyperresponsiveness and inflammation in asthmatic rats by modulating the Th17/Treg balance. Mol Med Rep. 2017;16(6):8137–45. 10.3892/mmr.2017.7605
25 Abreu SC, Antunes MA, Xisto DG, Cruz FF, Branco VC, Bandeira E, et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Transl Med. 2017;6(6):1557–67. 10.1002/sctm.16-0398
26 Bernardo ME, Fibbe WE. Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392–402. 10.1002/sctm.16-0398
27 Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS One. 2016;11(7):e0158746. 10.1371/journal.pone.0158746
28 Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779–92. 10.1089/scd.2011.0105
29 Nystedt J, Anderson H, Tikkanen J, Pietilä M, Hirvonen T, Takalo R, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells. 2013;31(2):317–26. 10.1002/stem.1271
30 Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A. 2010;107(12):5652–7. 10.1073/pnas.0910720107
31 Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, LeClair L, Poynter ME, et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells. 2011;29(7):1137–48. 10.1002/stem.656
32 Park HK, Cho KS, Park HY, Shin DH, Kim YK, Jung JS, et al. Adipose-derived stromal cells inhibit allergic airway inflammation in mice. Stem Cells Dev. 2010;19:1811–8. 10.1089/scd.2009.0513
33 Işık S, Karaman M, Adan A, Kıray M, Bağrıyanık HA, Sözmen ŞÇ, et al. Intraperitoneal mesenchymal stem cell administration ameliorates allergic rhinitis in the murine model. Eur Arch Otorhinolaryngol. 2017;274(1):197–207. 10.1007/s00405-016-4166-3
34 Sakine I, Nevin U, Meral K, Özkan K, Müge K, İlknur K, et al. Effects of intraperitoneal injection of allogeneic bone marrow-derived mesenchymal stem cells on bronchiolitis obliterans in mice model. Iran J Allergy Asthma Immunol. 2017;16(3):205–18.
35 Liang X, Ding Y, Zhang Y, Tse H-F, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplant. 2014;23(9):1045–59. 10.3727/096368913X667709
36 Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25(1):31. 10.1186/s12929-018-0429-1
37 Ahmad T, Mukherjee S, Pattnaik BR, Kumar M, Singh S, Rehman R, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophysical J. 2013;104(2, suppl. 1):659a. 10.1016/j.bpj.2012.11.3638
38 Yao Y, Fan X-L, Jiang D, Zhang Y, Li X, Xu Z-B, et al. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports. 2018;11(5):1120–35. 10.1016/j.stemcr.2018.09.012
39 Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, et al. Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett. 2008;430(2):109–14. 10.1016/j.neulet.2007.10.046
40 Li J, Zhou J, Zhang D, Song Y, She J, Bai C. Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion-induced lung injury. J Cell Mol Med. 2015;19(10):2341–51. 10.1111/jcmm.12638
41 Zhou Z, You Z. Mesenchymal stem cells alleviate LPS-induced acute lung injury in mice by MiR-142a-5p-controlled pulmonary endothelial cell autophagy. Cell Physiol Biochem. 2016;38(1):258–66. 10.1159/000438627
42 Habibian R, Delirezh N, Farshid AA. The effects of bone marrow-derived mesenchymal stem cells on ovalbumin-induced allergic asthma and cytokine responses in mice. Iran J Basic Med Sci. 2018; 21(5):483–8.
43 Moghaddasi K, Hesaraki S, Arfaee F, Athari SS. Investigating the effect of mesenchymal stem cells on the rate of clinical and pathological improvement of asthmatic lung in mouse model. Regen Ther. 2024; 25:157–61. 10.1016/j.reth.2023.12.013
44 Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, et al. Mesenchymal stem/stromal cells in asthma therapy: Mechanisms and strategies for enhancement. Cell Transplant. 2023;32:1–20. 10.1177/09636897231180128
45 Shin JW, Ryu S, Ham J, Jung K, Lee S, Chung DH, et al. Mesenchymal stem cells suppress severe asthma by directly regulating Th2 cells and type 2 innate lymphoid cells. Mol Cells. 2021;44(8):580–90. 10.14348/molcells.2021.0101
46 Kim RL, Bang J-Y, Kim J, Mo Y, Kim Y, Lee C-G, et al. Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model. Sci Rep. 2022;12:9811. 10.1038/s41598-022-14027-x
47 Mo Y, Kang H, Bang J-Y, Shin JW, Kim HY, Cho S-H, et al. Intratracheal administration of mesenchymal stem cells modulates lung macrophage polarization and exerts anti-asthmatic effects. Sci Rep. 2022;12:11728. 10.1038/s41598-022-14846-y
48 Choi JY, Hur J, Jeon S, Jung CKRhee CK. Effects of human adipose tissue and bone marrow-derived mesenchymal stem cells on airway inflammation and remodeling in a murine model of chronic asthma. Sci Rep. 2022;12:12032. 10.1038/s41598-022-16165-8