ZBTB16 exerts anti-angiogenic effects in rheumatoid arthritis by regulating HIF-1α pathway
Main Article Content
Keywords
GRK2/HIF-1α pathway, rheumatoid arthritis, ZBTB16
Abstract
Background: Rheumatoid arthritis (RA) is one complex chronic autoimmune disease, resulting body pain and badly affect the health of RA patients. Zinc finger and BTB domain containing 16 (ZBTB16) has been reported to participate into many diseases including osteoarthritis and osteoporosis.
Objective: To verify the regulatory functions of ZBTB16 in RA progression keep dimness.
Methods: The mRNA expressions were tested through RT-qPCR. The protein expressions were evaluated through western blot. The pathological changes of synovial tissues were determined through HE staining. The erosion and destruction of bone tissues were examined through safranin-O/fast green staining. The levels of TNF-α, IL-1β, IL-6 and MMP-3 were testified through ELISA. The fluorescence intensity of proteins was assessed through IF assay.
Results: Firstly, it was uncovered that ZBTB16 expression was markedly reduced in the synovium tissues of RA patients through analyzing GSE55235 expression profile by GEO2R online tool. Next, ZBTB16 expression was down-regulated in synovial tissues of RA patients. Moreover, ZBTB16 can alleviate the degree of paw swelling in CIA mice. ZBTB16 improved the pathological changes of synovial tissues in CIA mice. The levels of inflammatory factors and matrix metalloproteinase were increased in CIA mice, but these impacts were reversed after ZBTB16 amplification. ZBTB16 can relieve pannus in CIA mice. Besides, the triggered GRK2/HIF-1α pathway in CIA mice can be retarded after ZBTB16 overexpression.
Conclusion: ZBTB16 exerted anti-angiogenic effects in RA by blocking GRK2/HIF-1α pathway. This work hinted that ZBTB16 may be one useful target for RA treatment.
References
2 Cush JJ. Rheumatoid arthritis: Early diagnosis and treatment. Rheum Dis Clin North Am. 2022;48(2):537–47. 10.1016/j.rdc.2022.02.010
3 Gravallese EM, Firestein GS. Rheumatoid arthritis—Common origins, divergent mechanisms. N Engl J Med. 2023;388(6):529–42. 10.1056/NEJMra2103726
4 Jang S, Kwon EJ, Lee JJ. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int J Mol Sci. 2022;23(2):905. 10.3390/ijms23020905
5 Wu G, Liu C, Cao B, Cao Z, Zhai H, Liu B, et al. Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Front Immunol. 2022;13:934061. 10.3389/fimmu.2022.934061
6 Poddighe D, Romano M, Gattinara M, Gerloni V. Biologics for the treatment of juvenile idiopathic arthritis. Curr Med Chem. 2018;25(42):5860–93. 10.2174/0929867325666180522085716
7 Goodman SM. Rheumatoid arthritis: Perioperative management of biologics and DMARDs. Semin Arthritis Rheum. 2015;44(6):627–32. 10.1016/j.semarthrit.2015.01.008
8 Zhao J, Wen D, Zhang S, Jiang H, Di X. The role of zinc finger proteins in malignant tumors. FASEB J. 2023;37(9):e23157. 10.1096/fj.202300801R
9 Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise review: Balancing stem cell self-renewal and differentiation with PLZF. Stem Cells. 2016;34(2):277–87. 10.1002/stem.2270
10 Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, et al. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci. 2024;81(1):88. 10.1007/s00018-024-05125-2
11 Wang K, Guo D, Yan T, Sun S, Wang Y, Zheng H, et al. ZBTB16 inhibits DNA replication and induces cell cycle arrest by targeting WDHD1 transcription in lung adenocarcinoma. Oncogene. 2024;43(23):1796–810. 10.1038/s41388-024-03041-0
12 Zhang H, Qiu J, Zhao Q, Zhang Y, Zheng H, Dou Z, et al. Tanshinone IIA alleviates bleomycin-induced pulmonary fibrosis by inhibiting Zbtb16. Pulm Pharmacol Ther. 2024;84:102285. 10.1016/j.pupt.2024.102285
13 Felthaus O, Gosau M, Morsczeck C. ZBTB16 induces osteogenic differentiation marker genes in dental follicle cells independent from RUNX2. J Periodontol. 2014;85(5):e144–51. 10.1902/jop.2013.130445
14 Yu W, Xie Z, Li J, Lin J, Su Z, Che Y, et al. Super enhancers targeting ZBTB16 in osteogenesis protect against osteoporosis. Bone Res. 2023;11(1):30. 10.1038/s41413-023-00267-8
15 Xiong B, Chen L, Huang Y, Lu G, Chen C, Nong J, et al. ZBTB16 eases lipopolysaccharide-elicited inflammation, apoptosis and degradation of extracellular matrix in chondrocytes during osteoarthritis by suppressing GRK2 transcription. Exp Ther Med. 2023;25(6):276. 10.3892/etm.2023.11975
16 Ding H, Mei X, Li L, Fang P, Guo T, Zhao J. RUNX1 ameliorates rheumatoid arthritis progression through epigenetic inhibition of LRRC15. Mol Cells. 2023;46(4):231–44. 10.14348/molcells.2023.2136
17 Bevaart L, Vervoordeldonk MJ, Tak PP. Collagen-induced arthritis in mice. Methods Mol Biol. 2010;602:181–92. 10.1007/978-1-60761-058-8_11
18 Joyce AA, Williams JN, Shi J, Mandell JC, Isaac Z, Ermann J. Atlanto-axial pannus in patients with and without rheumatoid arthritis. J Rheumatol. 2019;46(11):1431–7. 10.3899/jrheum.181429
19 Yang J, Xiong J, Sun Y, Gu L, Chen Y, Guo Y, et al. B7-H3 promotes angiogenesis in rheumatoid arthritis. Mol Immunol. 2024;165:19–27. 10.1016/j.molimm.2023.12.002
20 Kuai J, Han C, Wei W. Potential regulatory roles of GRK2 in endothelial cell activity and pathological angiogenesis. Front Immunol. 2021;12:698424. 10.3389/fimmu.2021.698424
21 Yang X, Zhao Y, Wei Q, Zhu X, Wang L, Zhang W, et al. GRK2 inhibits Flt-1(+) macrophage infiltration and its proangiogenic properties in rheumatoid arthritis. Acta Pharm Sin B. 2024;14(1):241–55. 10.1016/j.apsb.2023.09.013
22 Guo P, Jiang J, Chu R, He F, Ge M, Fang R, et al. GRK2-mediated degradation of SAV1 initiates hyperplasia of fibroblast-like synoviocytes in rheumatoid arthritis. Acta Pharm Sin B. 2024;14(3):1222–40. 10.1016/j.apsb.2023.12.007
23 Tao J, Jiang C, Guo P, Chen H, Zhu Z, Su T, et al. A novel GRK2 inhibitor alleviates experimental arthritis through restraining Th17 cell differentiation. Biomed Pharmacother. 2023;157:113997. 10.1016/j.biopha.2022.113997
24 Hong Z, Tie Q, Zhang L. Targeted inhibition of the GRK2/HIF-1α pathway is an effective strategy to alleviate synovial hypoxia and inflammation. Int Immunopharmacol. 2022;113(Pt A):109271. 10.1016/j.intimp.2022.109271
25 Hong Z, Zhang X, Zhang T, Hu L, Liu R, Wang P, et al. The ROS/GRK2/HIF-1α/NLRP3 pathway mediates pyroptosis of fibroblast-like synoviocytes and the regulation of monomer derivatives of paeoniflorin. Oxid Med Cell Longev. 2022;2022:4566851. 10.1155/2022/4566851
26 Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 2024;11(1):234–51. 10.1016/j.gendis.2023.02.039
27 Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202–8. 10.1016/j.jjcc.2022.09.002
28 Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, et al. Efficacy and safety of curcumin and Curcuma longa extract in the treatment of arthritis: A systematic review and meta-analysis of randomized controlled trial. Front Immunol. 2022;13:891822. 10.3389/fimmu.2022.891822
29 Pavlov-Dolijanovic S, Bogojevic M, Nozica-Radulovic T, Radunovic G, Mujovic N. Elderly-onset rheumatoid arthritis: Characteristics and treatment options. Medicina (Kaunas). 2023;59(10):1878. 10.3390/medicina59101878
30 Evans CH, Ghivizzani SC, Robbins PD. The 2024 OREF clinical research award: Progress toward a gene therapy for arthritis. J Am Acad Orthop Surg. 2024;32(23):1052–60. 10.5435/JAAOS-D-24-00831
31 Wallace BI, Cooney L, Fox DA. New molecular targets in the treatment of rheumatoid arthritis. Curr Opin Rheumatol. 2024;36(3):235–40. 10.1097/BOR.0000000000001000
32 Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021;12:686155. 10.3389/fimmu.2021.686155