Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential
Main Article Content
Keywords
asthma, reactive oxygen species, autophagy, mitophagy, therapeutic strategy
Abstract
Asthma is a chronic respiratory disease, characterized by airway inflammation, hyperresponsiveness, and remodeling. Oxidative stress and autophagy play pivotal roles in asthma pathogenesis. Excessive production of reactive oxygen species (ROS) worsens airway damage and inflammation, and impaired antioxidant defenses in patients with asthma further increase ROS production, leading to tissue damage. Environmental factors, such as allergens and air pollution, and inflammatory cells, such as macrophages and eosinophils, contribute to elevated ROS levels, thereby intensifying the disease. Autophagy, a key mechanism for eliminating damaged organelles and maintaining cellular homeostasis, plays a dual role in asthma. While autophagy activation mitigates oxidative stress, dysregulated or excessive autophagy worsens airway remodeling and inflammation. This review examines the interplay between oxidative stress and autophagy in asthma and discusses emerging therapeutic approaches targeting autophagy to improve disease outcomes.
References
2 Mims JW. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015;5 Suppl 1:S2–6. 10.1002/alr.21609
3 Gans MD, Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020;36:118–27. 10.1016/j.prrv.2019.08.002
4 Miller RL, Grayson MH, Strothman K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021;148:1430–41. 10.1016/j.jaci.2021.10.001
5 Zhang H, Huang L, Guo Y. Dietary antioxidant and inflammatory potential in asthmatic patients and its association with all-cause mortality. Nutr. J. 2024;23:95. 10.1186/s12937-024-00994-6
6 Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann. Thorac. Med. 2012;7:226–32. 10.4103/1817-1737.102182
7 Planagumà A, Kazani S, Marigowda G, Haworth O, Mariani TJ, Israel E, et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am. J. Respir. Crit. Care Med. 2008;178:574–82. 10.1164/rccm.200801-061OC
8 Ono E, Dutile S, Kazani S, Wechsler ME, Yang J, Hammock BD, et al. Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am. J. Respir. Crit. Care. Med. 2014;190:886–97. 10.1164/rccm.201403-0544OC
9 Racanelli AC, Kikkers SA, Choi AMK, Cloonan SM. Autophagy and inflammation in chronic respiratory disease. Autophagy. 2018;14:221–32. 10.1080/15548627.2017.1389823
10 Lv X, Li K, Hu Z. Asthma and Autophagy. Adv. Exp. Med. Biol. 2020;1207:581–4. 10.1007/978-981-15-4272-5_41
11 Albano GD, Montalbano AM, Gagliardo R, Profita M. Autophagy/mitophagy in airway diseases: Impact of oxidative stress on epithelial cells. Biomolecules. 2023;13. 10.3390/biom13081217
12 Cordani M, Sánchez-Álvarez M, Strippoli R, Bazhin AV, Donadelli M. Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid. Med. Cell Longev. 2019;2019:1283075. 10.1155/2019/1283075
13 Doherty J, Baehrecke EH. Life, death and autophagy. Nat. Cell Biol. 2018;20:1110–7. 10.1038/s41556-018-0201-5
14 Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: Physiology and pathology. Trends Biochem. Sci. 2011;36:30–8. 10.1016/j.tibs.2010.07.007
15 Zhao X, Zhang Q, Zheng R. The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Front. Physiol. 2022;13:1004275. 10.3389/fphys.2022.1004275
16 Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679. 10.1016/j.redox.2020.101679
17 Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatr. Respir. Rev. 2021;37:18–21. 10.1016/j.prrv.2020.05.004
18 Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023;162:114606. 10.1016/j.biopha.2023.114606
19 Mak JC, Leung HC, Ho SP, Law BK, Lam WK, Tsang KW, et al. Systemic oxidative and antioxidative status in Chinese patients with asthma. J. Allergy Clin. Immunol. 2004;114:260–4. 10.1016/j.jaci.2004.05.013
20 Ben Anes A, Ben Nasr H, Fetoui H, Bchir S, Chahdoura H, Yacoub S, et al. Alteration in systemic markers of oxidative and antioxidative status in Tunisian patients with asthma: Relationships with clinical severity and airflow limitation. J. Asthma. 2016;53:227–37. 10.3109/02770903.2015.1087559
21 Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr. 1991;54:1119S–24S. 10.1093/ajcn/54.6.1119s
22 Ochs-Balcom HM, Grant BJ, Muti P, Sempos CT, Freudenheim JL, Browne RW, et al. Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD. Eur. J. Clin. Nutr. 2006;60:991–9. 10.1038/sj.ejcn.1602410
23 Ruprai RK. Plasma oxidant-antioxidants status in asthma and its correlation with pulmonary function tests. Indian J. Physiol. Pharmacol. 2011;55:281–7.
24 Al-Afaleg NO, Al-Senaidy A, El-Ansary A. Oxidative stress and antioxidant status in Saudi asthmatic patients. Clin. Biochem. 2011;44:612–7. 10.1016/j.clinbiochem.2011.01.016
25 Corradi M, Folesani G, Andreoli R, Manini P, Bodini A, Piacentini G, et al. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am. J. Respir. Crit. Care Med. 2003;167:395–9. 10.1164/rccm.200206-507OC
26 Nagasaki T, Schuyler AJ, Zhao J, Samovich SN, Yamada K, Deng Y, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J. Clin. Invest. 2022;132. 10.1172/JCI151685
27 Marchese ME, Kumar R, Colangelo LA, Avila PC, Jacobs DR, Gross M, et al. The vitamin E isoforms α-tocopherol and γ-tocopherol have opposite associations with spirometric parameters: The CARDIA study. Respiratory Research. 2014;15:31. 10.1186/1465-9921-15-31
28 Ammar M, Bahloul N, Amri O, Omri R, Ghozzi H, Kammoun S, et al. Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J. Clin. Lab Anal. 2022;36:e24345. 10.1002/jcla.24345
29 Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, et al. Molecular mechanisms of oxidative stress in asthma. Mol. Aspects Med. 2022;85:101026. 10.1016/j.mam.2021.101026
30 Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends. Immunol. 2011;32:402–11. 10.1016/j.it.2011.06.006
31 Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, et al. House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks in the lungs. J. Allergy Clin. Immunol. 2016;138:84–96.e1. 10.1016/j.jaci.2016.02.017
32 Boldogh I, Bacsi A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Invest. 2005;115:2169–79. 10.1172/JCI24422
33 Shalaby KH, Allard-Coutu A, O’Sullivan MJ, Nakada E, Qureshi ST, Day BJ, et al. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. J. Immunol. 2013;191:922–33. 10.4049/jimmunol.1103644
34 Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J. Allergy Clin. Immunol. 2018;142:942–58. 10.1016/j.jaci.2017.11.044
35 Che L, Jin Y, Zhang C, Lai T, Zhou H, Xia L, et al. Ozone-induced IL-17A and neutrophilic airway inflammation is orchestrated by the caspase-1-IL-1 cascade. Sci. Rep. 2016;6:18680. 10.1038/srep18680
36 Flayer CH, Ge MQ, Hwang JW, Kokalari B, Redai IG, Jiang Z, et al. Ozone inhalation attenuated the effects of budesonide on aspergillus fumigatus-induced airway inflammation and hyperreactivity in mice. Front. Immunol. 2019;10:2173. 10.3389/fimmu.2019.02173
37 Zmirou D, Gauvin S, Pin I, Momas I, Sahraoui F, Just J, et al. Traffic related air pollution and incidence of childhood asthma: Results of the vesta case-control study. J. Epidemiol. Community Health. 2004;58:18–23. 10.1136/jech.58.1.18
38 Anderson HR. Air pollution and trends in asthma. Ciba Found. Symp. 1997;206:190–202; Discussion 3–7.
39 Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health. Perspect. 2003;111:455–60. 10.1289/ehp.6000
40 Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors—Implications for pollution mediated stress and inflammatory responses. Redox. Biol. 2020;34:101530. 10.1016/j.redox.2020.101530
41 Han JY, Takeshita K, Utsumi H. Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic. Biol. Med. 2001;30:516–25. 10.1016/S0891-5849(00)00501-3
42 Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, et al. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp. Mol. Med. 2011;43:275–80. 10.3858/emm.2011.43.5.028
43 Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol. 2011;80:580–3. 10.1111/j.1365-2958.2011.07612.x
44 Rb J, Kitagawa S. Molecular basis for the enhanced respiratory burst of activated macrophages. Federation Proceedings. 1985;44 14:2927–32.
45 Lohmann-Matthes ML, Steinmüller C, Franke-Ullmann G. Pulmonary macrophages. Eur. Respir. J. 1994;7:1678–89. 10.1183/09031936.94.07091678
46 Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121:2074–83. 10.1182/blood-2012-05-432088
47 Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, et al. Eosinophil extracellular traps in asthma: Implications for pathogenesis and therapy. Respir. Res. 2023;24:231. 10.1186/s12931-023-02504-4
48 Sedgwick JB, Vrtis RF, Gourley MF, Busse WW. Stimulus-dependent differences in superoxide anion generation by normal human eosinophils and neutrophils. J. Allergy Clin. Immunol. 1988;81:876–83. 10.1016/0091-6749(88)90945-1
49 McGovern TK, Chen M, Allard B, Larsson K, Martin JG, Adner M. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness. Am. J. Physiol. Lung Cell Mol. Physiol. 2016;310:L155–65. 10.1152/ajplung.00172.2015.
50 Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM. Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance. J. Allergy Clin. Immunol. Pract. 2019;7:516–25.e6. 10.1016/j.jaip.2018.08.024
51 Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C. Heme to protein linkages in mammalian peroxidases: Impact on spectroscopic, redox and catalytic properties. Nat. Prod. Rep. 2007;24:571–84. 10.1039/B604178G
52 Van Der Vliet A, Nguyen MN, Shigenaga MK, Eiserich JP, Marelich GP, Cross CE. Myeloperoxidase and protein oxidation in cystic fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000;279:L537–46. 10.1152/ajplung.2000.279.3.L537
53 Pham DL, Ban GY, Kim SH, Shin YS, Ye YM, Chwae YJ, et al. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin. Exp. Allergy. 2017;47:57–70. 10.1111/cea.12859
54 Saito T, Ichikawa T, Numakura T, Yamada M, Koarai A, Fujino N, et al. PGC-1α regulates airway epithelial barrier dysfunction induced by house dust mite. Respir. Res. 2021;22:63. 10.1186/s12931-021-01672-5
55 Sugiura H, Ichinose M. Oxidative and nitrative stress in bronchial asthma. Antioxid. Redox. Signal. 2008;10:785–97. 10.1089/ars.2007.1937
56 Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic. Biol. Med. 2010;48:1121–32. 10.1016/j.freeradbiomed.2010.01.006
57 Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 2012;209:1505–17. 10.1084/jem.20112691
58 Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More than just a barrier: The immune functions of the airway epithelium in asthma pathogenesis. Front. Immunol. 2020;11:761. 10.3389/fimmu.2020.00761
59 Dickinson JD, Sweeter JM, Warren KJ, Ahmad IM, De Deken X, Zimmerman MC, et al. Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation. Redox. Biol. 2018;14:272–84. 10.1016/j.redox.2017.09.013
60 Sies H, Cadenas E. Oxidative stress: Damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1985;311:617–31. 10.1098/rstb.1985.0168
61 Roca-Agujetas V, de Dios C, Lestón L, Marí M, Morales A, Colell A. Recent Insights into the mitochondrial role in autophagy and its regulation by oxidative stress. Oxid. Med. Cell Longev. 2019;2019:3809308. 10.1155/2019/3809308
62 Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88. 10.1038/cdd.2014.150
63 Noda T. Regulation of autophagy through TORC1 and mTORC1. Biomolecules. 2017;7. 10.3390/biom7030052
64 Dunlop EA, Tee AR. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem. Soc. Trans. 2013;41:939–43. 10.1042/BST20130030
65 Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J. 2012;441:523–40. 10.1042/BJ20111451
66 Xu D, Wang Z, Chen Y. Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation. Autophagy. 2016;12:1047–8. 10.1080/15548627.2016.1163459
67 Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–80. 10.1038/cdd.2010.191
68 Kang J, Ajumal S, Swaminathan K, Pervaiz S. Abstract 13: Biophysical evidence for the existence of a functional interaction between the small GTPase Rac-1 and the anti-apoptotic protein Bcl-2. Cancer Res. 2015;75:13–13. 10.1158/1538-7445.AM2015-13
69 Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction regulates autophagy induction. Sci. Rep. 2013;3:1055. 10.1038/srep01055
70 Nascimbeni AC, Giordano F, Dupont N, Grasso D, Vaccaro MI, Codogno P, et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. Embo. J. 2017;36:2018–33. 10.15252/embj.201797006
71 Chu C-A, Wang Y-W, Chen Y-L, Chen H-W, Chuang J-J, Chang H-Y, et al. The role of phosphatidylinositol 3-kinase catalytic subunit type 3 in the pathogenesis of human cancer. Int. J. Mol. Sci. 2021;22:10964. 10.3390/ijms222010964
72 Hayakawa A, Hayes SJ, Lawe DC, Sudharshan E, Tuft R, Fogarty K, et al. Structural basis for endosomal targeting by FYVE domains*. J. Biol. Chem. 2004;279:5958–66. 10.1074/jbc.M310503200
73 Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 2001;355:249–58. 10.1042/bj3550249
74 Lawe DC, Patki V, Heller-Harrison R, Lambright D, Corvera S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 Binding: Critical role of this dual interaction for endosomal localization*. J. Biol. Chem. 2000;275:3699–705. 10.1074/jbc.275.5.3699
75 Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001;2:211–6. 10.1038/35056522
76 Gammoh N. The multifaceted functions of ATG16L1 in autophagy and related processes. J. Cell Sci. 2020;133. 10.1242/jcs.249227
77 Gong X, Pan L. ATG16L1 is equipped with two distinct WIPI2-binding sites to drive autophagy. Autophagy. 2024;20:938–40. 10.1080/15548627.2023.2213038
78 Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. MBoC. 2008;19:2092–100. 10.1091/mbc.e07-12-1257
79 Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol. Cell. 2010;40:280–93. 10.1016/j.molcel.2010.09.023
80 Barnes PJ, Baker J, Donnelly LE. Autophagy in asthma and chronic obstructive pulmonary disease. Clin. Sci. (Lond). 2022;136:733–46. 10.1042/CS20210900
81 Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell. 2019;176:11–42. 10.1016/j.cell.2018.09.048
82 Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J. Biol. Chem. 2005;280:20558–64. 10.1074/jbc.M501116200
83 Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 2002;277:27975–81. 10.1074/jbc.M204152200
84 Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. Faseb. J. 2002;16:771–80. 10.1096/fj.01-0658com
85 Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. J. Biol. Chem. 2000;275:25130–8. 10.1074/jbc.M001914200
86 Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA. 2002;99:4319–24. 10.1073/pnas.261702698
87 Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, et al. Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol. Sci. 2009;110:376–88. 10.1093/toxsci/kfp101
88 Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. Embo. J. 2003;22:5501–10. 10.1093/emboj/cdg513
89 Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS, et al. Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res. 2002;62:5689–97.
90 Agrotis A, Pengo N, Burden JJ, Ketteler R. Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy. 2019;15:976–97. 10.1080/15548627.2019.1569925
91 Pérez-Pérez ME, Lemaire SD, Crespo JL. Control of autophagy in chlamydomonas is mediated through redox-dependent inactivation of the ATG4 rotease. Plant Physiol. 2016;172:2219–34. 10.1104/pp.16.01582
92 Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. Embo. J. 2007;26:1749–60. 10.1038/sj.emboj.7601623
93 Yang S, Sun D, Wang L, Wang X, Shi M, Jiang X, et al. The role of STAT3/mTOR-regulated autophagy in angiotensin II-induced senescence of human glomerular mesangial cells. Cell Signal. 2019;53:327–38. 10.1016/j.cellsig.2018.10.021
94 Mondaca-Ruff D, Riquelme JA, Quiroga C, Norambuena-Soto I, Sanhueza-Olivares F, Villar-Fincheira P, et al. Angiotensin II-regulated autophagy is required for vascular smooth muscle cell hypertrophy. Front. Pharmacol. 2018;9:1553. 10.3389/fphar.2018.01553
95 Li Y, Luo Q, Yuan L, Miao C, Mu X, Xiao W, et al. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells. Toxicol. Appl. Pharmacol. 2012;263:21–31. 10.1016/j.taap.2012.05.018
96 Ding WX, Yin XM. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012;393:547–64. 10.1515/hsz-2012-0119
97 Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011;12:9–14. 10.1038/nrm3028
98 Liu X, Hussain R, Mehmood K, Tang Z, Zhang H, Li Y. Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Biomed. Res. Int. 2022;2022:6459585. 10.1155/2022/6459585
99 Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001;61:6669–73.
100 Li YQ, Zhang F, Yu LP, Mu JK, Yang YQ, Yu J, et al. Targeting PINK1 using natural products for the treatment of human diseases. Biomed. Res. Int. 2021;2021:4045819. 10.1155/2021/4045819
101 Wang N, Zhu P, Huang R, Wang C, Sun L, Lan B, et al. PINK1: The guard of mitochondria. Life Sci. 2020;259:118247. 10.1016/j.lfs.2020.118247
102 Mijaljica D, Prescott M, Devenish RJ. Different fates of mitochondria: Alternative ways for degradation? Autophagy. 2007;3:4–9. 10.4161/auto.3011
103 Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy. 2012;8:1462–76. 10.4161/auto.21211
104 Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell Biol. 2009;29:2570–81. 10.1128/MCB.00166-09
105 Li G, Li J, Shao R, Zhao J, Chen M. FUNDC1: A promising mitophagy regulator at the mitochondria-associated membrane for cardiovascular diseases. Front. Cell Dev. Biol. 2021;9:788634. 10.3389/fcell.2021.788634
106 Xiao B, Goh JY, Xiao L, Xian H, Lim KL, Liou YC. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin. J. Biol. Chem. 2017;292:16697–708. 10.1074/jbc.M117.787739
107 Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015;16:1145–63. 10.15252/embr.201540759
108 Novák Z, Németh I, Varga I, Matkovics B, Gyurkovits K. Role of free oxygen radicals in bronchial asthma and in cystic fibrosis. Respir. Med. 1994;88:823. 10.1016/S0954-6111(05)80247-1
109 Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic. Biol. Med. 1990;9:235–43. 10.1016/0891-5849(90)90034-G
110 Hoshino T, Okamoto M, Takei S, Sakazaki Y, Iwanaga T, Aizawa H. Redox-regulated mechanisms in asthma. Antioxid. Redox. Signal. 2008;10:769–83. 10.1089/ars.2007.1936
111 Silveira JS, Antunes GL, Kaiber DB, da Costa MS, Ferreira FS, Marques EP, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model. J. Cell. Physiol.. 2020;235:267–80. 10.1002/jcp.28966
112 Liu T, Liu Y, Miller M, Cao L, Zhao J, Wu J, et al. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017;313:L27–L40. 10.1152/ajplung.00510.2016
113 Liu JN, Suh DH, Trinh HK, Chwae YJ, Park HS, Shin YS. The role of autophagy in allergic inflammation: A new target for severe asthma. Exp. Mol. Med. 2016;48:e243. 10.1038/emm.2016.38
114 James AL, Elliot JG, Jones RL, Carroll ML, Mauad T, Bai TR, et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am. J. Respir. Crit. Care. Med. 2012;185:1058–64. 10.1164/rccm.201110-1849OC
115 Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am. J. Respir. Crit. Care Med. 2003;167:1360–8. 10.1164/rccm.200209-1030OC
116 Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, et al. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med. 1997;156:642–7. 10.1164/ajrccm.156.2.9605065
117 Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis. 2015;6:e1696. 10.1038/cddis.2015.36
118 Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, et al. Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J. Allergy Clin. Immunol. 2003;111:1293–8. 10.1067/mai.2003.1557
119 Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, et al. Increased autophagy-related 5 gene expression Is associated with collagen expression in the airways of refractory Asthmatics. Front. Immunol. 2017;8:355. 10.3389/fimmu.2017.00355
120 Poon AH, Chouiali F, Tse SM, Litonjua AA, Hussain SN, Baglole CJ, et al. Genetic and histologic evidence for autophagy in asthma pathogenesis. J. Allergy Clin. Immunol. 2012;129:569–71. 10.1016/j.jaci.2011.09.035
121 Martin LJ, Gupta J, Jyothula SS, Butsch Kovacic M, Biagini Myers JM, Patterson TL, et al. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One. 2012;7:e33454. 10.1371/journal.pone.0033454
122 Umetsu DT, DeKruyff RH. The regulation of allergy and asthma. Immunol. Rev. 2006;212:238–55. 10.1111/j.0105-2896.2006.00413.x
123 KleinJan A. Airway inflammation in asthma: Key players beyond the Th2 pathway. Curr. Opin. Pulm. Med. 2016;22:46–52. 10.1097/MCP.0000000000000224
124 Samitas K, Zervas E, Gaga M. T2-low asthma: Current approach to diagnosis and therapy. Curr. Opin. Pulm. Med. 2017;23:48–55. 10.1097/MCP.0000000000000342
125 Murai H, Okazaki S, Hayashi H, Kawakita A, Hosoki K, Yasutomi M, et al. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells. Biochem. Biophys. Res. Commun. 2015;464:969–74. 10.1016/j.bbrc.2015.05.076
126 Suzuki Y, Maazi H, Sankaranarayanan I, Lam J, Khoo B, Soroosh P, et al. Lack of autophagy induces steroid-resistant airway inflammation. J. Allergy Clin. Immunol. 2016;137:1382-9.e9. 10.1016/j.jaci.2015.09.033
127 Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res. 2013;73:3–7. 10.1158/0008-5472.CAN-12-2464
128 Tirpude NV, Sharma A, Bhardwaj N. Agnuside mitigates OVA-LPS induced perturbed lung homeostasis via modulating inflammatory, autophagy, apoptosis-fibrosis response and myeloid lineages in mice model of allergic asthma. Int. Immunopharmacol. 2022;106:108579. 10.1016/j.intimp.2022.108579
129 Tirpude NV, Sharma A, Joshi R, Kumari M, Acharya V. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-κB and TGF-β/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. J. Ethnopharmacol. 2021;271:113894. 10.1016/j.jep.2021.113894
130 Alkhouri H, Hollins F, Moir LM, Brightling CE, Armour CL, Hughes JM. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma. Allergy. 2011;66:1231–41. 10.1111/j.1398-9995.2011.02616.x
131 Sharma A, Khan MA, Tirpude NV. Leupeptin maintains redox homeostasis via targeting ROS-autophagy-inflammatory axis in LPS-stimulated macrophages and cytokines dichotomy in Con-A challenged lymphocyte. Peptides. 2023;168:171066. 10.1016/j.peptides.2023.171066
132 Kim YH, Choi YJ, Kang MK, Lee EJ, Kim DY, Oh H, et al. Oleuropein curtails pulmonary inflammation and tissue destruction in models of experimental asthma and emphysema. J. Agric. Food Chem. 2018;66:7643–54. 10.1021/acs.jafc.8b01808
133 Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X, Llobet-Navàs D. Autophagy in the physiological endometrium and cancer. Autophagy. 2021;17:1077–95. 10.1080/15548627.2020.1752548
134 Yang N, Shang Y. Ferrostatin-1 and 3-methyladenine ameliorate ferroptosis in OVA-induced asthma model and in IL-13-challenged BEAS-2B cells. Oxid. Med. Cell Longev. 2022;2022:9657933. 10.1155/2022/9657933
135 Beasley R, Harrison T, Peterson S, Gustafson P, Hamblin A, Bengtsson T, et al. Evaluation of budesonide-formoterol for maintenance and reliever therapy among patients with poorly controlled asthma: A systematic review and meta-analysis. JAMA Netw. Open. 2022;5:e220615. 10.1001/jamanetworkopen.2022.0615
136 Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin. Exp. Allergy. 2021;51:1553–65. 10.1111/cea.13825
137 Gu W, Cui R, Ding T, Li X, Peng J, Xu W, et al. Simvastatin alleviates airway inflammation and remodelling through up-regulation of autophagy in mouse models of asthma. Respirology. 2017;22:533–41. 10.1111/resp.12926
138 Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. Brain Behav. 2023;13:e2995. 10.1002/brb3.2995
139 Mushaben EM, Kramer EL, Brandt EB, Khurana Hershey GK, Le Cras TD. Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J. Immunol. 2011;187:5756–63. 10.4049/jimmunol.1102133
140 Tirpude NV, Sharma A, Kumari M, Bhardwaj N. Vitexin restores lung homeostasis by targeting vicious loop between inflammatory aggravation and autophagy mediated via multiple redox cascade and myeloid cells alteration in experimental allergic asthma. Phytomedicine. 2022;96:153902. 10.1016/j.phymed.2021.153902