Epalrestat suppresses inflammatory response in lipopolysaccharide-stimulated RAW264.7 cells

Main Article Content

Keisuke Sato
Ryosuke Tatsunami
Koji Wakame

Keywords

epalrestat, inflammatory response, inflammatory cytokine, inflammatory mediator, pro-inflammatory cytokine

Abstract

Introduction and objectives: Lipopolysaccharide (LPS) is a potent inducer of inflammatory response. Inflammation is a major risk factor for many diseases. Regulation of inflammatory mediator and pro-inflammatory cytokine levels could be a potential therapeutic approach to treat inflammatory injury. The purpose of the present study was to determine whether epalrestat (EPS), which is used for the treatment of diabetic neuropathy, suppresses inflammatory response in LPS-stimulated RAW264.7 cells.


Material and methods: The effects of EPS at near-plasma concentration on the levels of pro-inflammatory cytokines and inflammatory mediators was examined using by MTS assay, quantitative RT-PCR analysis, and western blotting in LPS-stimulated RAW264.7 cells.


Results: EPS suppressed mRNA and protein expression levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNFα, in RAW264.7 cells stimulated with LPS. EPS also affected inflammatory mediators such as iNOS and NF-κB in LPS-stimulated RAW264.7 cells.


Conclusions: In this study, we demonstrated for the first time that EPS suppresses inflammatory response in LPS-stimulated RAW264.7 cells. From these results, we propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators by EPS is a promising therapeutic approach to treat inflammatory injury. It is expected that EPS, whose safety and pharmacokinetics have been confirmed clinically, would be useful for the treatment of inflammatory diseases.

Abstract 260 | PDF Downloads 147 XML Downloads 5 HTML Downloads 16

References

1. Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci. 2020;21(2):379. https://doi.org/10.3390/ijms21020379
2. Dong J, Li J, Cui L, Wang Y, Lin J, Qu Y, et al. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. BMC Vet Res. 2018;14(1):30. https://doi.org/10.1186/s12917-018-1360-0
3. Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol Med. 2000;6(5):347–73. https://doi.org/10.1007/BF03401781
4. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. https://doi.org/10.1038/nrc3611
5. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat Rev Drug Discov. 2014;13(6):465–76. https://doi.org/10.1038/nrd4275
6. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:e17023. https://doi.org/10.1038/sigtrans.2017.23
7. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
8. Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1(1):244–57. https://doi.org/10.1016/j.redox.2013.01.014
9. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–9. https://doi.org/10.1016/j.redox.2012.10.001
10. Boyanapalli SSS, Gonzalez XP, Fuentes F, Zhang C, Guo Y, Pung D, et al. Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem Res Toxicol. 2014;27(12):2036-43. https://doi.org/10.1021/tx500234h
11. Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G. Diallyl sulfide enhances antioxidants and inhibits inflammation through activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol. 2009;606(1–3):162–71. https://doi.org/10.1016/j.ejphar.2008.12.055
12. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624. https://doi.org/10.1038/ncomms11624
13. Arita Y, Park HJ, Cantillon A, Verma K, Menon R, Getahun D, et al. Pro- and anti-inflammatory effects of sulforaphane on placental cytokine production. J Reprod Immunol. 2019;131:44–9. https://doi.org/10.1016/j.jri.2018.12.003
14. Subedi L, Lee JH, Yumnam S, Ji E, Kim SY. Anti-inflammatory effects of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cells. 2019;8(2):194. https://doi.org/10.3390/cells8020194
15. Steele JW, Faulds D, Goa KL. Epalrestat: A review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus. Drugs Aging.1993;3(6):532–55. https://doi.org/10.2165/00002512-199303060-00007
16. Sato K, Yama K, Murao Y, Tatsunami R, Tampo Y. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox Biol. 2013;2:15–21. https://doi.org/10.1016/j.redox.2013.11.003
17. Yama K, Sato K, Murao Y, Tatsunami R, Tampo Y. Epalrestat upregulates heme oxygenase-1, superoxide dismutase, and catalase in cells of nervous system. Biol Pharm Bull. 2016;39(9):1523–30. https://doi.org/10.1248/bpb.b16-00332
18. Yama K, Sato K, Abe N, Murao Y, Tatsunami R, Tampo Y. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells. Redox Biol. 2015;4:87–96. https://doi.org/10.1016/j.redox.2014.12.002
19. Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013;2013:127170. https://doi.org/10.1155/2013/127170
20. Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic BiolMed. 2011;51(11):1952–65. https://doi.org/10.1016/j.freeradbiomed.2011.08.034
21. Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 2010;23(2):75–93. https://doi.org/10.1016/j.niox.2010.04.007
22. Rayet B, Gélinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene.1999;18(49):6938–47. https://doi.org/10.1038/sj.onc.1203221
23. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12(8):695–708. https://doi.org/10.1038/ni.2065
24. Ling J, Kumar R. Crosstalk between NF-κB and glucocorticoid signaling: A potential target of breast cancer therapy. Cancer Lett. 2012;322(2):119–26. https://doi.org/10.1016/j.canlet.2012.02.033
25. Jiang Y, Gong XW. Regulation of inflammatory responses by MAPK signal transduction pathways. Acta Physiologica Sinica. 2000;52(4):267–71.
26. Ono Pharmaceutical Co. Ltd. Kinedak (Epalrestat) package insert. Osaka, Japan: Ono Pharmaceutical Co.; 2009.
27. Fairweather D, Rose NR. Inflammatory heart disease: A role for cytokines. Lupus. 2005;14(9):646–51. https://doi.org/10.1191/0961203305lu2192oa
28. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008. https://doi.org/10.3390/ijms20236008
29. Porcherie A, Cunha P, Trotereau A, Roussel P, Gilbert FB, Rainard P, et al. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Vet Res. 2012;43(1):14. https://doi.org/10.1186/1297-9716-43-14
30. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208
31. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32. https://doi.org/10.1177/1747493018778713
32. Raykova VD, Glibetic M, Ofenstein JP, Aranda JVA. Nitric oxide-dependent regulation of pro-inflammatory cytokines in group B streptococcal inflammation of rat lung. Ann Clin Lab Sci. 2003;33(1):62–7.
33. Zhang QS, Heng Y, Yuan YH, Chen NH. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation.Toxicol Lett. 2017;265:30–7. https://doi.org/10.1016/j.toxlet.2016.11.002
34. Habib S, Ali A. Biochemistry of nitic oxide. Indian J Clin Biochem. 2011;26(1):3–17. https://doi.org/10.1007/s12291-011-0108-4
35. Shao J, Li Y, Wang Z, Xiao M, Yin P, Lu Y, et al. 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol. 2013;17(2):216–28. https://doi.org/10.1016/j.intimp.2013.06.00
36. Bonizzi G, Karin M. The two NF-kB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25(6):280–8. https://doi.org/10.1016/j.it.2004.03.008
37. Yodkeeree S, Ooppachai C, Pompimon W, Dejkriengkraikul PL. O-Methylbulbocapnine and dicentrine suppress LPS-induced inflammatory response by blocking NF-κB and AP-1 activation through inhibiting MAPKs and Akt signaling in RAW264.7 macrophages. Biol Pharm Bull. 2018;41(8):1219–27. https://doi.org/10.1248/bpb.b18-00037
38. Sun P, Zhou K, Wang S, Li P, Chen S, Lin G, et al. Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One. 2013;8(8):e69424. https://doi.org/10.1371/journal.pone.0069424
39. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta. 2017;1863(2):585–97. https://doi.org/10.1016/j.bbadis.2016.11.005
40. Mizuno K, Kume T, Muto C, Takatori YT, Izumi Y, Sugimoto H, et al. Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2)- antioxidant-response element (ARE) pathway is essential for neuroprotective effects of sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. J Pharmacol Sci. 2011;115(3):320–8. https://doi.org/10.1254/JPHS.10257FP
41. Sun GY, Chen Z, Jasmer KJ, Chuang DY, GuZ, Hannink M, et al. Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One. 2015;10(10):e0141509. https://doi.org/10.1371/journal.pone.0141509
42. Bahar E, Kim JY, Yoon H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int J Mol Sci. 2017;18(9):1989. https://doi.org/10.3390/ijms18091989
43. Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci. 2004;24(5):1101–12. https://doi.org/10.1523/JNEUROSCI.3817-03.2004
44. Motterlini R, Foresti R. Heme oxygenase-1 as a target for drug discovery. Antioxid Redox Signal. 2014;20(11):1810–26. https://doi.org/10.1089/ars.2013.5658
45. Paine A, Vesper BE, Blasczyk R, Immenschuh S. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol. 2010;80(12):1895–903. https://doi.org/10.1016/j.bcp.2010.07.014
46. Ryter SW. Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys. 2019;678:108186. https://doi.org/10.1016/j.abb.2019.108186