Triamcinolone acetonide induces the autophagy of Ag85B-treated WI-38 cells via SIRT1/FOXO3 pathway

Main Article Content

Li Luo
Lei Zhou
Linzi Luo
Dan Feng
Yan Ding
Zhibin Lu
Ganjuan Nie
Liqiong Bai
Yangbao Xiao

Keywords

autophagy, SIRT1/FOXO3 pathway, tracheobronchial stenosis due to tuberculosis, triamcinolone acetonide

Abstract

Background: Tracheobronchial stenosis due to tuberculosis (TSTB) seriously threatens the health of tuberculosis patients. The inflammation and autophagy of fibroblasts affect the development of TSTB. Triamcinolone acetonide (TA) can regulate the autophagy of fibroblasts. Nevertheless, the impact of TA on TSTB and underlying mechanism has remained unclear.


Objective: To study the impact of TA on TSTB and underlying mechanism.


Material and Methods: In order to simulate the TSTB-like model in vitro, WI-38 cells were exposed to Ag85B protein. In addition, the cell counting kit (CCK)-8 assay was applied to assess the function of TA in Ag85B-treated WI-38 cells. Quantitative real-time polymerase chain reaction was applied to detect the mRNA level of sirtuin 1 (SIRT1) and forkhead box O3 (FOXO3a), and autophagy-related proteins were evaluated by Western blot analysis. Vascular endothelial growth factor (VEGF) level was investigated by immunohistochemical staining. Enzyme-linked immunosorbent serologic assay was applied to detect the secretion of inflammatory cytokines. Furthermore, hematoxylin and eosin staining was applied to observe tissue injuries.


Results: Ag85B affected WI-38 cell viability in a limited manner, while TA notably suppressed Ag85B-treated WI-38 cell viability. TA induced the apoptosis of Ag85B-treated WI-38 cells in a dose-dependent manner. In addition, Ag85B-treated WI-38 cells demonstrated the upregulation of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), interferon gamma (IFN-γ), and fibrotic proteins (transforming growth factor-beta [TGF-β] and vascular endothelial growth factor [VEGF]), which can be significantly destroyed by the TA. Meanwhile, TA reversed Ag85-induced inhibition of cell autophagy by mediation of p62, LC3, and Beclin1. Furthermore, silencing of SIRT1/FOXO3a pathway could reverse the effect of TA on the autophagy of Ag85B-treated cells.


Conclusion: TA significantly induced the autophagy of fibroblasts in Ag85B-treated cells by mediation of SIRT1/FOXO3 pathway. This study established a new theoretical basis for exploring strategies against TSTB.

Abstract 360 | PDF Downloads 454 HTML Downloads 33 XML Downloads 17

References

1. Pathak V, Shepherd RW, Shojaee S. Tracheobronchial tuberculosis. J Thorac Dis. 2016;8(12):3818–25. 10.21037/jtd.2016.12.75

2. Lee KCH, Tan S, Goh JK, Hsu AAL, Low SY. Long-term outcomes of tracheobronchial stenosis due to tuberculosis (TSTB) in symptomatic patients: Airway intervention vs. conservative management. J Thorac Dis. 2020;12(7):3640–50. 10.21037/JTD-20-670

3. Lee HS, Hua HS, Wang CH, Yu MC, Chen BC, Lin CH. Mycobacterium tuberculosis induces connective tissue growth factor expression through the TLR2-JNK-AP-1 pathway in human lung fibroblasts. FASEB J. 2019;33(11):12554–64. 10.1096/fj.201900487R

4. Kim Y, Kim K, Joe J, Park H, Lee M, Kim Y, et al. Changes in the levels of interferon-gamma and transforming growth factor-beta influence bronchial stenosis during the treatment of endobronchial tuberculosis. Respiration. 2007;74(2):202–7. 10.1159/000097491

5. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro-and anti--inflammatory cytokines is associated with sterilization. PLoS Pathog. 2015;11(1):e1004603. 10.1371/journal.ppat.1004603

6. Karagiannidis C, Velehorschi V, Obertrifter B, Macha HN, Linder A, Freitag L. High-level expression of matrix-associated transforming growth factor-beta1 in benign airway stenosis. Chest. 2006;129(5):1298–304. 10.1378/chest.129.5.1298

7. Kuma A, Komatsu M, Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy. 2017;13(10):1619–28. 10.1080/15548627.2017.1343770

8. Qin EY, Gan LM, Gan JH, Li Y, Li WT, Hou CC, et al. [Expression and significance of autophagy in rabbit model of tracheal stenosis]. Zhonghua Yi Xue Za Zhi (Chinese). 2017;97(48):3816–20.

9. Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, et al. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. NPJ Vaccines. 2019;4:34. 10.1038/s41541-019-0122-8

10. Oh DS, Lee HK. Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 2019;15(12):2091–106. 10.1080/15548627.2019.1596493

11. Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics. Redox Biol. 2015;4:215–25. 10.1016/j.redox.2014.12.010

12. Athanasiadis Y, Tsatsos M, Sharma A, Hossain P. Subconjunctival triamcinolone acetonide in the management of ocular inflammatory disease. J Ocul Pharmacol Ther. 2013;29(6):516–22. 10.1089/jop.2012.0208

13. Nakajima N, Hashimoto S, Sato H, Takahashi K, Nagoya T, Kamimura K, et al. Efficacy of gelatin hydrogels incorporating triamcinolone acetonide for prevention of fibrosis in a mouse model. Regen Ther. 2019;11:41–6. 10.1016/j.reth.2019.04.001

14. Chen AD, Chen RF, Li YT, Huang YT, Lin SD, Lai CS, et al. Triamcinolone acetonide suppresses keloid formation through enhancing apoptosis in a nude mouse model. Ann Plast Surg. 2019;83(4S, Suppl 1):S50–4. 10.1097/SAP.0000000000002090

15. Zhou W, Yu Q, Ma J, Xu C, Wu D, Li C. Triamcinolone acetonide combined with 5-fluorouracil suppresses urethral scar fibroblasts autophagy and fibrosis by increasing miR-192-5p expression. Am J Transl Res. 2021;13(6):5956–68.

16. Hietanen KE, Järvinen TA, Huhtala H, Tolonen TT, Kuokkanen HO, Kaartinen IS. Treatment of keloid scars with intralesional triamcinolone and 5-fluorouracil injections—A randomized controlled trial. J Plast Reconstr Aesthet Surg. 2019;72(1):4–11. 10.1016/j.bjps.2018.05.052

17. Carroll LA, Hanasono MM, Mikulec AA, Kita M, Koch RJ. Triamcinolone stimulates bFGF production and inhibits TGF-beta1 production by human dermal fibroblasts. Dermatol Surg. 2002;28(8):704–9. 10.1046/j.1524-4725.2002.02012.x

18. Colunga Biancatelli RML, Solopov PA, Sharlow ER, Lazo JS, Marik PE, Catravas JD. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2021;321(2):L477–84. 10.1152/ajplung.00223.2021

19. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: The master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–38. 10.1038/nrneph.2016.48

20. Xu F, Liu C, Zhou D, Zhang L. TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64(3):157–67. 10.1369/0022155415627681

21. Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, et al. microRNA-21, via the HIF-1alpha/VEGF signaling pathway, is involved in arsenite--induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. Chemosphere. 2021;266:129177. 10.1016/j.chemosphere.2020.129177

22. Kariya T, Nishimura H, Mizuno M, Suzuki Y, Matsukawa Y, Sakata F, et al. TGF-beta1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol. 2018;314(2):F167–80. 10.1152/ajprenal.00052.2017

23. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer. 2017;36(1):52. 10.1186/s40880-017-0219-2

24. Kim KH, Lee MS. Autophagy—A key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–37. 10.1038/nrendo.2014.35

25. Parzych KR, Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. 10.1089/ars.2013.5371

26. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–76. 10.1056/NEJMra2022774

27. Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell. 2019;176(1–2):11–42. 10.1016/j.cell.2018.09.048

28. Chu H, Jiang S, Liu Q, Ma Y, Zhu X, Liang M, et al. Sirtuin1 protects against systemic sclerosis-related pulmonary fibrosis by decreasing proinflammatory and profibrotic processes. Am J Respir Cell Mol Biol. 2018;58(1):28–39. 10.1165/rcmb.2016-0192OC

29. Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70. 10.1164/rccm.200708-1269OC

30. Zhu X, Liu Q, Wang M, Liang M, Yang X, Xu X, et al. Activation of Sirt1 by resveratrol inhibits TNF-alpha-induced inflammation in fibroblasts. PLoS One. 2011;6(11):e27081. 10.1371/journal.pone.0027081

31. Tang BL. Sirt1 and the mitochondria. Mol Cells. 2016;39(2): 87–95. 10.14348/molcells.2016.2318

32. Lin Y, Sheng M, Weng Y, Xu R, Lu N, Du H, et al. Berberine protects against ischemia/reperfusion injury after orthotopic liver transplantation via activating Sirt1/FOXO3 alpha--induced autophagy. Biochem Biophys Res Commun. 2017;483(2): 885–91. 10.1016/j.bbrc.2017.01.028

33. Hwang JW, Rajendrasozhan S, Yao H, Chung S, Sundar IK, Huyck HL, et al. FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation,-airspace enlargement, and chronic obstructive pulmonary-disease. J Immunol. 2011;187(2):987–98. 10.4049/jimmunol.1001861

34. Zheng LN, Guo FQ, Li ZS, Wang Z, Ma JH, Wang T, et al. Dexmedetomidine protects against lidocaine-induced neurotoxicity through SIRT1 downregulation-mediated activation of FOXO3a. Hum Exp Toxicol. 2020;39(9):1213–23. 10.1177/0960327120914971

35. Li H, Chou P, Du F, Sun L, Liu J, Wang W. Depleting microRNA-183-3p improves renal tubulointerstitial fibrosis after acute kidney injury via SIRT1/PUMA/FOXO3a deacetylation. Life Sci. 2021;269:119017. 10.1016/j.lfs.2021.119017

36. Zhao Y, Jiang Q, Zhang X, Zhu X, Dong X, Shen L, et al. l-arginine alleviates LPS-induced oxidative stress and apoptosis via activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a signaling pathways in C2C12 myotube cells. Antioxidants (Basel). 2021;10(12):1957. 10.3390/antiox10121957

37. Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, et al. Current trends in protein acetylation analysis. Expert Rev Proteomics. 2019;16(2):139–59. 10.1080/14789450.2019.1559061

38. Baeza J, Smallegan MJ, Denu JM. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci. 2016;41(3):231–44. 10.1016/j.tibs.2015.12.006

39. Chen H, Hu X, Yang R, Wu G, Tan Q, Goltzman D, et al. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)2D deficiency. Int J Biol Sci. 2020;16(14):2712–26. 10.7150/ijbs.48169

40. Zou Z, Liu B, Zeng L, Yang X, Huang R, Wu C, et al. Cx43 inhibition attenuates sepsis-induced intestinal Injury via downregulating ROS transfer and the activation of the JNK1/Sirt1/FOXO3a signaling pathway. Mediators Inflamm. 2019;2019:7854389. 10.1155/2019/7854389

41. Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother. 2017;90:386–92. 10.1016/j.biopha.2017.03.056