Vitamin A–regulated ciliated cells promote airway epithelium repair in an asthma mouse model

Main Article Content

Wen Tan
Jilei Lin
Yaping Wang
Li Yan
Linyan Ying
Jihong Dai
Zhou Fu
Jingyue Liu


airway epithelium, asthma, ciliated cell, vitamin A, treatment


Background: Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma.

Methods: A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium.

Results: Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1.

Conclusion: These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma.

Abstract 117 | PDF Downloads 103 HTML Downloads 12 XML Downloads 5


1. Serebrisky D, Wiznia A. Pediatric asthma: A global epidemic. Ann Glob Health. 2019;85(1):6. 10.5334/aogh.2416

2. Liu J, Zhang M, Niu C, Luo Z, Dai J, Wang L, et al. Dexamethasone inhibits repair of human airway epithelial cells mediated by glucocorticoid-induced leucine zipper (GILZ). PLoS One. 2013;8(4):e60705. 10.1371/journal.pone.0060705

3. Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014;69(11):1540–9. 10.1111/all.12503

4. Whitsett JA. Airway Epithelial differentiation and mucociliary clearance. Ann Am Thorac Soc. 2018;15(Suppl 3):S143–8. 10.1513/AnnalsATS.201802-128AW

5. Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67(1):12–7. 10.1016/j.alit.2017.08.011

6. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol. 2020;145(6):1499–509. 10.1016/j.jaci.2020.04.010

7. Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549–56.e1–12. 10.1016/j.jaci.2011.05.038

8. Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway epithelial dynamics in allergy and related chronic inflammatory airway diseases. Front Cell Dev Biol. 2020;8:204. 10.3389/fcell.2020.00204

9. Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy. 2018;73(5):993–1002. 10.1111/all.13373

10. Zhang ML, Tao Y, Zhou WQ, Ma PC, Cao YP, He CD, et al. All-trans retinoic acid induces cell-cycle arrest in human cutaneous squamous carcinoma cells by inhibiting the mitogen-activated protein kinase-activated protein 1 pathway. Clin Exp Dermatol. 2014;39(3):354–60. 10.1111/ced.12227

11. Samarasinghe AE, Penkert RR, Hurwitz JL, Sealy RE, LeMessurier KS, Hammond C, et al. Questioning cause and effect: Children with severe asthma exhibit high levels of inflammatory biomarkers including beta-hexosaminidase, but low levels of vitamin A and immunoglobulins. Biomedicines. 2020;8(10):393. 10.3390/biomedicines8100393

12. Bai YJ, Dai RJ. Serum levels of vitamin A and 25-hydroxyvitamin D3 (25OHD3) as reflectors of pulmonary function and quality of life (QOL) in children with stable asthma: A case-control study. Medicine (Baltimore). 2018;97(7):e9830. 10.1097/MD.0000000000009830

13. Talaei M, Hughes DA, Mahmoud O, Emmett PM, Granell R, Guerra S, Shaheen SO. Dietary intake of vitamin A, lung function and incident asthma in childhood. Eur Respir J. 2021;58(4):2004407. 10.1183/13993003.04407-2020

14. Wang Y, Liao K, Liu B, Niu C, Zou W, Yang L, et al. GITRL on dendritic cells aggravates house dust mite-induced airway inflammation and airway hyperresponsiveness by modulating CD4(+) T cell differentiation. Respir Res. 2021;22(1):46. 10.1186/s12931-020-01583-x

15. Niu C, Liu N, Liu J, Zhang M, Ying L, Wang L, et al. Vitamin A maintains the airway epithelium in a murine model of asthma by suppressing glucocorticoid-induced leucine zipper. Clin Exp Allergy. 2016;46(6):848–60. 10.1111/cea.12646

16. Triantaphyllopoulos K, Hussain F, Pinart M, Zhang M, Li F, Adcock I, et al. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol. 2011;300(5):L691–700. 10.1152/ajplung.00252.2010

17. Tan M, Yang T, Liu H, Xiao L, Li C, Zhu J, et al. Maternal vitamin A deficiency impairs cholinergic and nitrergic neurons, leading to gastrointestinal dysfunction in rat offspring via RARβ. Life Sci. 2021;264:118688. 10.1016/j.lfs.2020.118688

18. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215(11):2850–67. 10.1084/jem.20172026

19. Giuranno L, Roig EM, Wansleeben C, van den Berg A, Groot AJ, et al. NOTCH inhibition promotes bronchial stem cell renewal and epithelial barrier integrity after irradiation. Stem Cells Transl Med. 2020;9(7):799–812. 10.1002/sctm.19-0278

20. Griggs TF, Bochkov YA, Basnet S, Pasic TR, Brockman-Schneider RA, Palmenberg AC, et al. Rhinovirus C targets ciliated airway epithelial cells. Respir Res. 2017;18(1):84. 10.1186/s12931-017-0567-0

21. You Y, Huang T, Richer EJ, Schmidt JH, Zabner J, Borok Z, et al. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L650–7. 10.1152/ajplung.00170.2003

22. Kauppi P, Linna M, Jantunen J, Martikainen JE, Haahtela T, Pelkonen A, et al. Chronic comorbidities contribute to the burden and costs of persistent asthma. Mediators Inflamm. 2015;2015:819194. 10.1155/2015/819194

23. Wang L, Zhong Y, Wheeler L. Direct and indirect costs of asthma in school-age children. Prev Chronic Dis. 2005;2(1):A11.

24. Uchmanowicz B, Panaszek B, Uchmanowicz I, Rosinczuk J. Clinical factors affecting quality of life of patients with asthma. Patient Prefer Adherence. 2016;10:579–89. 10.2147/PPA.S103043

25. Proud D, Leigh R. Epithelial cells and airway diseases. Immunol Rev. 2011;242(1):186–204. 10.1111/j.1600-065X.2011.01033.x

26. Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD. The airway epithelium: More than just a structural barrier. Ther Adv Respir Dis 2011;5(4):255–73. 10.1177/1753465810396539

27. Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More than just a barrier: The immune functions of the airway epithelium in asthma pathogenesis. Front Immunol. 2020;11:761. 10.3389/fimmu.2020.00761

28. Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678–82. 10.1513/pats.200907-067DP

29. Szema AM, Hamidi SA, Koller A, Martin DW. Vasoactive intestinal peptide knockout (VIP KO) mouse model of sulfite-sensitive asthma: Up-regulation of novel lung carbonyl reductase. BMC Immunol. 2011;12:66. 10.1186/1471-2172-12-66

30. Grumbach Y, Quynh NV, Chiron R, Urbach V. LXA4 stimulates ZO-1 expression and transepithelial electrical resistance in human airway epithelial (16HBE14o-) cells. Am J Physiol Lung Cell Mol Physiol. 2009;296(1):L101–8. 10.1152/ajplung.00018.2008

31. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92. 10.1038/nm.2737

32. Cokuğraş H, Akçakaya N, Seçkin I, Camcioğlu Y, Sarimurat N, Aksoy F. Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax. 2001;56(1):25–9. 10.1136/thorax.56.1.25

33. Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr. 2017;57(11):2404–11. 10.1080/10408398.2015.1060940

34. Fang KM, Wang CT, Chen YW, Huang TW. Reduction of adhesions and antrostomy stenosis with topical vitamin A after endoscopic sinus surgery. Am J Rhinol Allergy. 2015;29(6):430–4. 10.2500/ajra.2015.29.4235

35. Comptour A, Rouzaire M, Belville C, Bonnin N, Daniel E, Chiambaretta F, et al. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing. Sci Rep. 2016;6:32688. 10.1038/srep32688

36. Zinder R, Cooley R, Vlad LG, Molnar JA. Vitamin A and wound healing. Nutr Clin Pract. 2019;34(6):839–49. 10.1002/ncp.10420