MicroRNA-155 is a main part of proinflammatory puzzle during severe coronavirus disease 2019 (COVID-19)

Main Article Content

Asieh Asadpour-Behzadi
Ashraf Kariminik
Babak Kheirkhah https://orcid.org/0000-0001-8768-1977


SARS-CoV-2, Coronavirus Disease 2019, MiR-155, Inflammation


Genetic and epigenetic parameters play critical roles in determining the outcomes of the severe acute respiratory syndrome coronavirus type 19 (SARS-CoV-2) infection. MicroRNAs (miRNAs) are an important part of the epigenetic factors that regulate several functions of the immune cells and also viruses. Accordingly, the molecules can regulate expression of the immune cell proteins and virus in the host cells. Among the miRNAs, miRNA-155 (miR-155) is well-studied in patients suffering from severe coronavirus disease 2019 (COVID-19). It has been reported that the SARS-CoV-2 infected patients may be directed to induce a cytokine storm or severe proinflammatory responses. This review article discusses the pathological roles of miR-155 during COVID-19 infection.

Abstract 110 | PDF Downloads 96 HTML Downloads 12 XML Downloads 9


1. Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis—A review of current methods. Biosens Bioelectron. 2021;172:112752. 10.1016/j.bios.2020.112752

2. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250–6. 10.1002/jmv.26232

3. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. Elsevier Health Sciences: Philadelphia, PA; 2012.pp.52.

4. Aleksova A, Gagno G, Sinagra G, Beltrami AP, Janjusevic M, Ippolito G, et al. Effects of SARS-CoV-2 on cardiovascular system: The dual role of angiotensin-converting enzyme 2 (ACE2) as the virus receptor and homeostasis regulator—Review. Int J Mol Sci. 2021;22(9):4526. 10.3390/ijms22094526

5. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102(47):16961–6. 10.1073/pnas.0506482102

6. Abe M, Bonini NM. MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol. 2013;23(1):30–6. 10.1016/j.tcb.2012.08.013

7. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226-30. 10.1038/nature03076

8. Jia Y, Wei Y. Modulators of microRNA function in the immune system. Int J Mol Sci. 2020;21(7):2357. 10.3390/ijms21072357

9. Yu HR, Huang LH, Li SC. Roles of microRNA in the immature immune system of neonates. Cancer Lett. 2018;433:99–106. 10.1016/j.canlet.2018.06.014

10. Rose SA, Wroblewska A, Dhainaut M, Yoshida H, Shaffer JM, Bektesevic A, et al. A microRNA expression and regulatory element activity atlas of the mouse immune system. Nat Immunol. 2021;22(7):914–27. 10.1038/s41590-021-00944-y

11. Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127(3):291–8. 10.1111/j.1365-2567.2009.03092.x

12. Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: An ancient regulator of the immune system. Immunol Rev. 2013;253(1):146–57. 10.1111/imr.12057

13. Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: Two key modulators of immune response and tumor development. Noncoding RNA. 2017;3(3):22. 10.3390/ncrna3030022

14. Ibrahim SA, Afify AY, Fawzy IO, El-Ekiaby N, Abdelaziz AI. The curious case of miR-155 in SLE. Expert Rev Mol Med. 2021;23:e11. 10.1017/erm.2021.11

15. Kassif-Lerner R, Zloto K, Rubin N, Asraf K, Doolman R, Paret G, et al. miR-155: A potential biomarker for predicting mortality in COVID-19 patients. J Pers Med. 2022;12(2):324. 10.3390/jpm12020324

16. Haroun RA, Osman WH, Amin RE, Hassan AK, Abo-Shanab WS, Eessa AM. Circulating plasma miR-155 is a potential biomarker for the detection of SARS-CoV-2 infection. Pathology. 2022;54(1):104–10. 10.1016/j.pathol.2021.09.006

17. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005;33(8):2697–706. 10.1093/nar/gki567

18. Banzhaf-Strathmann J, Edbauer D. Good guy or bad guy: The opposing roles of microRNA 125b in cancer. Cell Commun Signal. 2014;12:30. 10.1186/1478-811X-12-30

19. Momeni M, Hassanshahi G, Arababadi MK, Kennedy D. Ectopic expression of micro-RNA-1, 21 and 125a in peripheral blood immune cells is associated with chronic HBV infection. Mol Biol Rep. 2014;41(7):4833–7. 10.1007/s11033-014-3355-7

20. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39. 10.1038/nrm2632

21. Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274(1–2):157–67. 10.1016/s0378-1119(01)00612-6

22. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol. 2011;31(19):4087–96. 10.1128/MCB.01276-10

23. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12. 10.1016/j.gene.2012.12.009

24. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, et al. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 2010;24(10):992–1009. 10.1101/gad.1884710

25. Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, et al. miR-155 modifies inflammation, endothelial activation and blood–brain barrier dysfunction in cerebral malaria. Mol Med. 2017;23:24–33. 10.2119/molmed.2016.00139

26. Chen S, Shan J, Niu W, Lin F, Liu S, Wu P, et al. Micro RNA-155 inhibitor as a potential therapeutic strategy for the treatment of acute kidney injury (AKI): A nanomedicine perspective. RSC Adv. 2018;8(29):15890–6. 10.1039/c7ra13440a

27. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol. 2015;77(1):75–99. 10.1002/ana.24304

28. Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, et al. Silencing microRNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep. 2016;6:22613. 10.1038/srep22613

29. Wang W, Bian H, Li F, Li X, Zhang D, Sun S, et al. HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell Mol Life Sci. 2018;75(14):2627–41. 10.1007/s00018-018-2753-8

30. Goncalves-Alves E, Saferding V, Schliehe C, Benson R, Kurowska-Stolarska M, Brunner JS, et al. MicroRNA-155 controls T helper cell activation during viral infection. Front Immunol. 2019;10:1367. 10.3389/fimmu.2019.01367

31. Garg A, Seeliger B, Derda AA, Xiao K, Gietz A, Scherf K, et al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail. 2021;23(3):468–75. 10.1002/ejhf.2096

32. Abbasi-Kolli M, Sadri Nahand J, Kiani SJ, Khanaliha K, Khatami A, Taghizadieh M, et al. The expression patterns of MALAT-1, NEAT-1, THRIL, and miR-155-5p in the acute to the post-acute phase of COVID-19 disease. Braz J Infect Dis. 2022;26(3):102354. 10.1016/j.bjid.2022.102354

33. Keikha R, Jebali A. [The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness]. Neurologia (Engl Ed). 2021,1-10. 10.1016/j.nrl.2021.06.005

34. Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, et al. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS One. 2022;17(4):e0266124. 10.1371/journal.pone.0266124

35. Vasuri F, Ciavarella C, Collura S, Mascoli C, Valente S, Degiovanni A, et al. Adventitial microcirculation is a major target of SARS-CoV-2-mediated vascular inflammation. Biomolecules. 2021;11(7):1063. 10.3390/biom11071063

36. Molinero M, Benítez ID, González J, Gort-Paniello C, Moncusí-Moix A, Rodríguez-Jara F, et al. Bronchial aspirate-based profiling identifies microRNA signatures associated with COVID-19 and fatal disease in critically ill patients. Front Med (Lausanne). 2021;8:756517. 10.3389/fmed.2021.756517

37. Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol. 2021;97:107641. 10.1016/j.intimp.2021.107641

38. Qi M, Liu B, Li S, Ni Z, Li F. Construction and investigation of competing endogenous RNA networks and candidate genes involved in SARS-CoV-2 infection. Int J Gen Med. 2021;14:6647–59. 10.2147/IJGM.S335162

39. Chow JT, Salmena L. Prediction and analysis of SARS-CoV-2-targeting microRNA in human lung epithelium. Genes (Basel). 2020;11(9):1002. 10.3390/genes11091002

40. Mahesh G, Biswas R. MicroRNA-155: A master regulator of inflammation. J Interferon Cytokine Res. 2019;39(6):321–30. 10.1089/jir.2018.0155

41. Li S, Duan X, Li Y, Li M, Gao Y, Li T, et al. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging (Albany NY). 2021;13(7):9265–76. 10.18632/aging.202877

42. Oh JH, Kim GB, Seok H. Implication of microRNA as a potential biomarker of myocarditis. Clin Exp Pediatr. 2022;65(5):230–8. 10.3345/cep.2021.01802