Assessment of intracellular zinc levels in infants with food protein–induced allergic proctocolitis

Main Article Content

Nursen Cigerci Gunaydin
Aliye Celikkol
Aysin Nalbantoglu

Keywords

Allergic Proctocolitis, Children, Erythrocyte Zinc, Food Allergy, Trace Element

Abstract

Background: Food protein–induced allergic proctocolitis (FPIAP) is characterized by bloody stools in well-appearing infants. Zinc is a micronutrient that plays a crucial role in immune modulation and is essential for cellular function during immune response. Although there are studies on the assessment of intracellular zinc levels in allergic diseases, no data is available on erythrocyte zinc levels of patients with FPIAP.


Objective: This study aimed to assess the erythrocyte zinc levels of children with allergic proctocolitis and compare zinc levels with clinical and demographic characteristics.


Methods: This was a case–control study that prospectively compared 50 patients with FPIAP and 50 healthy children without malnutrition. The erythrocyte zinc levels of children were determined using atomic absorption spectrophotometry.


Results: Fifty patients with FPIAP, including 28 (51%) girls, with median age of 7.1 ± 2.9 (3–14) months and 50 healthy children, including 26 (53.1%) girls, with median age of 7.7 ± 2.8 (3–13) months were included in the study. Seventy percent (n = 35) of the patients with FPIAP started to have symptoms while they were exclusively breastfeeding. Offending allergen foods were cow’s milk (78%), egg (40%), sesame (10%), hazelnut (8%), almond (6%), beef (6%), and peanuts (6%, n = 3). Intracellular (erythrocyte) zinc levels in patients with FPIAP were lower than in the healthy control group (495.5 ± 134 µg/dL, 567.3 ± 154.4 µg/dL, respectively, P = 0.01). Patients with FPIAP aged younger than 6 months had lower intracellular zinc levels compared with those aged above 6 months (457 ± 137 µg/dL; 548 ± 112 µg/dL, respectively, P = 0.01). There was no relationship between zinc levels and time of symptom onset, presence of concomitant disease, being allergic to multiple foods, and family history of atopy (P > 0.05).


Conclusions: FPIAP is a food allergy with limited information on its pathogenesis. Considering the beneficial effects on gastrointestinal system epithelia, zinc may be involved in the pathogenesis of FPIAP. Future comprehensive prospective research on this subject is of importance.

Abstract 119 | PDF Downloads 74 HTML Downloads 60 XML Downloads 7

References

1. Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. J Allergy Clin Immunol. 2010;126(6): 1105–18. 10.1016/j.jaci.2010.10.008

2. Odze RD, Bines J, Leichtner AM, Goldman H, Antonioli DA. Allergic proctocolitis in infants: A prospective clinicopatho-logic biopsy study. Hum Pathol. 1993;24(6):668–74. 10.1016/0046-8177(93)90248-f

3. Bone J, Claver A, Guallar I, Plaza AM. Allergic proctocolitis, food-induced enterocolitis: Immune mechanisms, diagnosis and treatment. Allergol Immunopathol (Madr). 2009; 37(1):36–42. 10.1016/s0301-0546(09)70250-2

4. Arvola T, Ruuska T, Keranen J, Hyoty H, Salminen S, Isolauri E, et al. Rectal bleeding in infancy: Clinical, allergological, and microbiological examination. Pediatrics. 2006; 117(4):760–8. 10.1542/peds.2005-1069

5. Lake AM. Food-induced eosinophilic proctocolitis. J Pediatr Gastroenterol Nutr. 2000; 30:58–60. 10.1097/00005176-200001001-00009

6. Nowak-Wegrzyn A. Food protein-induced enterocolitis syndrome and allergic proctocolitis. Allergy Asthma Proc. 2015;36(3):172–84. 10.2500/aap.2015.36.3811

7. Elizur A, Cohen M, Goldberg MR, Rajuan N, Cohen A, Leshno M, et al. Cow’s milk associated rectal bleeding: A population based prospective study. Pediatr Allergy Immunol. 2012; 23(8):766–70. 10.1111/pai.12009

8. Xanthakos SA, Schwimmer JB, Melin-Aldana H, Rothenberg ME, Witte DP, Cohen MB. Prevalence and outcome of allergic colitis in healthy infants with rectal bleeding: A prospective cohort study. J Pediatr Gastroenterol Nutr. 2005;41(1):16–22. 10.1097/01.mpg.0000161039.96200.f1

9. Nowak-Weôgrzyn A, Katz Y, Mehr SS, Koletzko S. Non-IgE-mediated gastrointestinal food allergy. J Allergy Clin Immunol. 2015;135(5):1114–24. 10.1016/j.jaci.2015.03.025

10. Lozinsky AC, Morais MB. Eosinophilic colitis in infants. J Pediatr (Rios J). 2014;90(1):16–21. 10.1016/j.jped.2013.03.024

11. Morita H, Nomura I, Matsuda A, Saito H, Matsumoto K. Gastrointestinal food allergy in infants. Allergol Int. 2013; 62(3):297–307. 10.2332/allergolint.13-RA-0542

12. Feuille E, Nowak-Wegrzyn A. Food protein-induced enterocolitis syndrome, allergic proctocolitis, and enteropathy. Curr Allergy Asthma Rep. 2015;15(8):50. 10.1007/s11882-015-0546-9

13. Fiocchi A, Claps A, Dahdah L, Brindisi G, Dionisi-Vici C, Martelli A. Differential diagnosis of food protein-induced enterocolitis syndrome. Curr Opin Allergy Clin Immunol. 2014;14(3):246–54. 10.1097/ACI.0000000000000057

14. Atanaskovic-Markovic M. Refractory proctocolitis in the exclusively breastfed infants. Endocr Metab Immune Disord Drug Targets. 2014;14(1):63–6. 10.2174/1871530314666140121145800

15. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc proteins encoded in the human genome. J Proteome Res. 2006;5(1):196–201. 10.1021/pr050361j

16. Shankar AH, Prasad AS. Zinc and immune function: The biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68:447–63. 10.1093/ajcn/68.2.447S

17. Maywald M, Rink L. Zinc homeostasis and immunosenescence. J Trace Elem Med Biol. 2015;29:24–30. 10.1016/j.jtemb.2014.06.003

18. Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael DJ, Ruben B, et al. Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol. 2007;56(1):116–24. 10.1016/j.jaad.2006.08.015

19. Thompson RP. Assessment of zinc status. Proc Nutr Soc. 1991;50(1):19–28. 10.1079/pns19910005

20. Karabacak E, Aydın E, Kutlu A, Ozcan O, Muftuoglu T, Gunes A, et al. Erythrocyte zinc level in patients with atopic dermatitis and its relation to SCORAD index. Postepy Dermatol Alergol. 2016;33(5):349–52. 10.5114/ada.2016.62841

21. Toyran M, Kaymak M, Vezir E, Harmanci K, Kaya A, Giniş T, et al. Trace element levels in children with atopic dermatitis. J Investig Allergol Clin Immunol. 2012;22(5):341–44.

22. Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001;107(5):891–6. 10.1067/mai.2001.114708

23. Koletzko S, Niggemann B, Arato A, Dias JA, Heuschkel R, Husby S, et al. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221–9. 10.1097/MPG.0b013e31825c9482

24. Venter C, Brown T, Shah N, Walsh J, Fox AT. Diagnosis and management of non-IgE-mediated cow’s milk allergy in infancy—a UK primary care practical guide. Clin Transl Allergy. 2013;3(1):23. 10.1186/2045-7022-3-23

25. Smith JC Jr, Butrimovitz GP, Purdy WC. Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem. 1979;25(8):1487–91.

26. Kamer B, Wasowicz W, Pyziak K, Kamer-Bartosinka A, Gromadzinka J, Pasowska R. Role of selenium and zinc in the pathogenesis of food allergy in infants and young children. Arch Med Sci. 2012;8(6):1083–8. 10.5114/aoms.2012.32420

27. Maares M, Haase H. Zinc and immunity: An essential interrelation. Arch Biochem Biophys. 2016;611:58–65. 10.1016/j.abb.2016.03.022

28. Zhang B, Guo Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr. 2009;102(5):687–93. 10.1017/S0007114509289033

29. Zakrzewski SS, Fromm M, Schulzke JD, Gunzel D. Zinc strengthens the jejunal barrier by reversibly tightening the paracellular route. Am J Physiol Gastrointest Liver Physiol. 2017;313(6):537–48. 10.1152/ajpgi.00355.2016

30. King JC, Shames DM, Woodhouse LR. Zinc homeostasis in humans. J Nutr. 2000;130(5S Suppl):1360–66. 10.1093/jn/130.5.1360S

31. Ojuawo A, Lindley KJ, Milla PJ. Serum zinc, selenium and copper concentration in children with allergic colitis. East Afr Med J. 1996;73(4):236–38.

32. Kim JE, Yoo SR, Jeong MG, Yeon Ko J, Suck Ro Y. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Derm Venereol. 2014;94(5):558–62. 10.2340/00015555-1772

33. Nowak-Wegrzyn A, Sampson HA, Wood RA, Sicherer SH. Food protein-induced enterocolitis syndrome caused by solid food proteins. Pediatrics. 2003;111(4 Pt 1):829–35. 10.1542/peds.111.4.829

34. Erdem SB, Nacaroglu H T, Karaman S, Erdur CB, Karkiner CU, Can D. Tolerance development in food protein-induced allergic proctocolitis: Single centre experience. Allergol Immunopathol (Madr). 2017;45(3):212–19. 10.1016/j.aller.2016.10.005

35. Ludman S, Harmon M, Whiting D, du Toit G. Clinical presentation and referral characteristics of food protein-induced enterocolitis syndrome in the united kingdom. Ann Allergy Asthma Immunol. 2014;113(3):290–4. 10.1016/j.anai.2014.06.020

36. Cetinkaya, PG, Kahveci, M, Sahiner Sekerel BE, Soyer O. Food protein-induced allergic proctocolitis may have distinct phenotypes. Ann Allergy Asthma Immunol. 2021;126(1);75–82. 10.1016/j.anai.2020.08.021

37. Lucarelli S, Di Nardo G, Lastrucci G, D’Alfonso Y, Marcheggiano A, Federici T, et al. Allergic proctocolitis refractory to maternal hypoallergenic diet in exclusively breastfed infants: A clinical observation. BMC Gastroenterol. 2011;11:82. 10.1186/1471-230X-11-82

38. Kaya A, Toyran M, Civelek E, Misirlioglu E, Kirsaclioglu C, Kocabas CN. Characteristics and prognosis of allergic proctocolitis in infants. J Pediatr Gastroenterol Nutr. 2015;61(1):69–73. 10.1097/MPG.0000000000000767

39. Wang X, Valenzano MC, Mercado JM, Zurbach EP, Mullin JM. Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Dig Dis Sci. 2013;58(1):77–87. 10.1007/s10620-012-2328-8

40. Alkhouri RH, Hashmi HH, Baker RD, Gelfond D, Baker SS. Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2013;56(1):89–92. 10.1097/MPG.0b013e31826a105d

41. World Health Organization Department of Child and Adolescent Health and Development/UNICEF. Clinical management of acute diarrhoea: WHO/UNICEF joint statement [WHO/FCH/ CAH/04.7; UNICEF/PD/Diarrhoea/01]. Geneva: World Health Organization, 2004.