Sevoflurane ameliorates LPS-induced inflammatory injury of HK-2 cells through Sirtuin1/NF-κB pathway

Main Article Content

Peipei Wang
Ping Wang
Miaomiao Yin
Shuo Wang


Acute kidney injury, nuclear factor kappa-B, sepsis, sevoflurane, Sirtuin 1


The anesthetic sevoflurane (SEV) has been shown to protect against organ’s injury during sepsis. The present study intended to uncover the protective effects of SEV on sepsis-induced acute kidney injury (SI-AKI) and its possible mechanism. Human renal tubular epithelial cell HK-2 was treated with 10 μg/mL lipopolysaccharide (LPS) to construct SI-AKI cell model. LPS-induced HK-2 cells were pretreated with SEV in the absence or presence of EX527, an inhibitor of Sirtuin 1 (SIRT1), after which were the detection of cell viability, lactate dehydrogenase (LDH) release, apoptosis, inflammation, and oxidative stress. Our results demonstrated that LPS caused decreased cell viability, increased LDH release, improved cell apoptosis along with decreased expression of Bcl2 and enhanced expressions of Bax, cleaved PARP and cleaved caspase, enhanced production, and protein expressions of TNF-α, IL-6, and IL-1β, increased generation of reactive oxygen species (ROS) and malondialdehyde (MDA), but contributed to declined activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). LPS inhibited SIRT1 and IκBα expressions but up-regulated p-NF-κB p65 and acetyl-p53 expressions as well. However, SEV pretreatment abolished all above-mentioned effects of LPS on HK-2 cells, while EX527 significantly reversed the effects of SEV. In conclusion, SEV effectively protected HK-2 cells against LPS-induced apoptosis, inflammation, and oxidative stress, and these effects may depend on the increase of SIRT1 expression, thereby inactivating NF-κB signaling.

Abstract 337 | PDF Downloads 217 HTML Downloads 39 XML Downloads 4


1. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96:1083–1099. 10.1016/j.kint.2019.05.026

2. Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ (Clinical research ed). 2019;364:k4891. 10.1136/bmj.k4891

3. Levey AS, James MT. Acute kidney injury. Ann Intern Med. 2017;167:Itc66-itc80. 10.7326/AITC201711070

4. Rahman M, Shad F, Smith MC. Acute kidney injury: A guide to diagnosis and management. Am Fam Physician. 2012;86:631–639. PMid: 23062091

5. Bedirli N, Bagriacik EU, Yilmaz G, Ozkose Z, Kavutçu M, Cavunt Bayraktar A, et al. Sevoflurane exerts brain-protective effects against sepsis-associated encephalopathy and memory impairment through caspase 3/9 and Bax/Bcl signaling pathway in a rat model of sepsis. J Int Med Res. 2018;46:2828–2842. 10.1177/0300060518773265

6. Chen H, Peng Y, Wang L, Wang X. Sevoflurane attenuates cognitive dysfunction and NLRP3-dependent caspase-1/11-GSDMD pathway-mediated pyroptosis in the hippocampus via upregulation of SIRT1 in a sepsis model. Arch Physiol Biochem. 2020;??:1–8. 10.1080/13813455.2020.1773860

7. Zhang E, Zhao X, Ma H, Luo D, Hu Y, Hou L, et al. A subanesthetic dose of sevoflurane combined with oxygen exerts bactericidal effects and prevents lung injury through the nitric oxide pathway during sepsis. Biomed Pharmacother. 2020;127:110169. 10.1016/j.biopha.2020.110169

8. Li J, Liu P, Li H, Wang Y, Chen Y, Qi R, Sevoflurane preconditioning prevents septic myocardial dysfunction in lipopolysaccharide-challenged mice. J Cardiovasc Pharmacol. 2019;74:462–473. 10.1097/FJC.0000000000000734

9. Xiao X, Liu D, Chen S, Li X, Ge M, Huang W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal. 2021;82:109966. 10.1016/j.cellsig.2021.109966

10. Rodríguez-González R, Baluja A, Veiras Del Río S, Rodríguez A, Rodríguez J, Taboada M, et al. Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. J Transl Med. 2013;11:87. 10.1186/1479-5876-11-87

11. Li H, Weng Y, Yuan S, Liu W, Yu H, Yu W. Effect of sevoflurane and propofol on acute kidney injury in pediatric living donor liver transplantation. Ann Transl Med. 2019;7:340. 10.21037/atm.2019.06.76

12. Bonkowski MS, Sinclair DA. Slowing ageing by design: The rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17:679–690. 10.1038/nrm.2016.93

13. Daenthanasanmak A, Iamsawat S, Chakraborty P, Nguyen HD, Bastian D, Liu C, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood. 2019;133:266–279. 10.1182/blood-2018-07-863233

14. Hu X, Lu Z, Yu S, Reilly J, Liu F, Jia D, et al. CERKL regulates autophagy via the NAD-dependent deacetylase SIRT1. Autophagy. 2019;15:453–465. 10.1080/15548627.2018.1520548

15. Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, et al. The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol. 2019;57:59–71. 10.1016/j.semcancer.2018.11.003

16. Wei S, Gao Y, Dai X, Fu W, Cai S, Fang H, et al. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol Renal Physiol. 2019;316: F20–F31. 10.1152/ajprenal.00119.2018

17. Cheng X, Zhang S, Wen Y, Shi Z. Clinical significance of sirtuin 1 level in sepsis: correlation with disease risk, severity, and mortality risk. Braz J Med Biol Res. 2020;54:e10271. 10.1590/1414-431x202010271

18. Ma Y, Nie H, Chen H, Li J, Hong Y, Wang B, et al. NAD+/NADH metabolism and NAD+-dependent enzymes in cell death and ischemic brain injury: Current advances and therapeutic implications. Curr Med Chem. 2015;22:1239–1247. 10.2174/0929867322666150209154420

19. Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, et al. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol Renal Physiol. 2011;301:F427–F435. 10.1152/ajprenal.00258.2010

20. Fan H, Yang HC, You L, Wang YY, He WJ, Hao CM. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2013;83:404–413. 10.1038/ki.2012.394

21. Kalakeche R, Hato T, Rhodes G, Dunn KW, El-Achkar TM, Plotkin Z, et al. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. JASN. 2011;22:1505–1516. 10.1681/ASN.2011020203

22. Huang G, Hao F, Hu X. Downregulation of microRNA-155 stimulates sevoflurane-mediated cardioprotection against myocardial ischemia/reperfusion injury by binding to SIRT1 in mice. J Cell Biochem. 2019;120:15494–15505. 10.1681/ASN.2011020203

23. Shi C, Zhao Y, Li Q, Li J. lncRNA SNHG14 plays a role in sepsis-induced acute kidney injury by regulating miR-93. Mediat Inflamm. 2021;2021:5318369. 10.1155/2021/5318369

24. Hou T, Ma H, Wang H, Chen C, Ye J, Ahmed AM, et al. Sevoflurane preconditioning attenuates hypoxia/reoxygenation injury of H9c2 cardiomyocytes by activation of the HIF-1/PDK-1 pathway. PeerJ. 2020;8:e10603. 10.7717/peerj.10603

25. Liu ZH, Zhang Y, Wang X, Fan XF, Zhang Y, Li X, et al. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother. 2019;118:109227. 10.1016/j.biopha.2019.109227

26. Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, et al. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA. 2009;106:2348–2352. 10.1073/pnas.0808146106

27. Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle (Georgetown, Tex). 2019;18:425–436. 10.1080/15384101.2019.1568746

28. Huang G, Bao J, Shao X, Zhou W, Wu B, Ni Z, et al. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci. 220;254:117791. 10.1016/j.lfs.2020.117791

29. Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, et al. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis. Oxid Med Cell Longev. 2020;2020:5454210. 10.1016/j.lfs.2020.117791

30. Ngamsri KC, Fabian F, Fuhr A, Gamper-Tsigaras J, Straub A, Fecher D, et al. Sevoflurane exerts protective effects in murine peritonitis-induced sepsis via hypoxia-inducible factor 1α/adenosine A2B receptor signaling. Anesthesiology. 2021;135:136–150. 10.1097/ALN.0000000000003788

31. Koutsogiannaki S, Hou L, Babazada H, Okuno T, Blazon-Brown N, Soriano SG, et al. The volatile anesthetic sevoflurane reduces neutrophil apoptosis via Fas death domain-Fas-associated death domain interaction. FASEB J. 2019;33:12668–12679. 10.1096/fj.201901360R

32. Hou Y, Lin X, Lei Z, Zhao M, Li S, Zhang M, et al. Sevoflurane prevents vulnerable plaque disruption in apolipoprotein E-knockout mice by increasing collagen deposition and inhibiting inflammation. Br J Anaesth. 2020;125:1034–1044. 10.1016/j.bja.2020.07.054

33. Brown MA, Jones WK. NF-kappaB action in sepsis: The innate immune system and the heart. Front Biosci. 2004;9:1201–1217. 10.2741/1304

34. Liu Z, Tang C, He L, Yang D, Cai J, Zhu J, et al. The negative feedback loop of NF-κB/miR-376b/NFKBIZ in septic acute kidney injury. JCI Insight. 2020;5: e142272. 10.1172/jci.insight.142272

35. Li YM, Zhang J, Su LJ, Kellum JA, Peng ZY. Downregulation of TIMP2 attenuates sepsis-induced AKI through the NF-κb pathway. Biochim Biophys Acta-Mol Basis Dis. 2019;1865:558–569. 10.1172/jci.insight.142272

36. Tang XL, Wang X, Fang G, Zhao YL, Yan J, Zhou Z, et al. Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice. J Nutr Biochem. 2021;90:108579. 10.1016/j.jnutbio.2020.108579

37. Nakamura K, Zhang M, Kageyama S, Ke B, Fujii T, Sosa RA, et al. Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury. J Hepatol. 2017;67:1232–1242. 10.1016/j.jhep.2017.08.010

38. Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Age Res Rev. 2018;43:64–80. 10.1016/j.arr.2018.02.004

39. Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. 2015;13:352. 10.1186/s12967-015-0710-y

40. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun. 2008;372:51–56. 10.1016/j.bbrc.2008.04.176

41. Xu S, Zeng Z, Zhao M, Huang Q, Gao Y, Dai X, et al. Evidence for SIRT1 mediated HMGB1 release from kidney cells in the early stages of hemorrhagic shock. Front Physiol. 2019;10:854. 10.3389/fphys.2019.00854

42. Li P, Liu Y, Qin X, Chen K, Wang R, Yuan L, et al. SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov. 2021;7:59. 10.1038/s41420-021-00443-x

43. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med. 2013;61:95–110. 10.1016/j.freeradbiomed.2013.03.015

44. Napper AD, Hixon J, McDonagh T, Keavey K, Pons JF, Barker J, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005;48:8045–8054. 10.1021/jm050522v

45. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci USA. 2013;110:E2772–E2781. 10.1021/jm050522v

46. Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, et al. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol.2021;99:108022. 10.1021/jm050522v

47. Wu Z, Chen J, Zhao W, Zhuo CH, Chen Q. Inhibition of miR-181a attenuates sepsis-induced inflammation and apoptosis by activating Nrf2 and inhibiting NF-κB pathways via targeting SIRT1. Kaohsiung J Med Sci. 2021;37:200–207. 10.1002/kjm2.12310