Whole-exome sequencing identified a homozygous novel RAG1 mutation in a child with omenn syndrome

Main Article Content

Wendi Wang
Jian Wang
Jingjing Wang
Jingting Liu
Jianying Pei
Wanyi Li
Yanxia Wang
Santasree Banerjee
Ruifeng Xu
Zhaoyan Meng
Bin Yi

Keywords

frameshift mutation, immune responses, omenn syndrome, RAG1 gene, SCID

Abstract

Introduction and objectives: Omenn syndrome (OS) is a very rare type of severe combined immunodeficiencies manifested with erythroderma, eosinophilia, hepatosplenomegaly, lymph-adenopathy, and elevated level of serum IgE. OS is inherited with an autosomal recessive mode of inheritance. Germline mutations in the human RAG1 gene cause OS.


Materials and methods: In this study, we investigated a 2-month-old boy with cough, mild anaemia, pneumonia, immunodeficiency, repeated infection, feeding difficulties, hepatomegaly, growth retardation, and heart failure. Parents of the proband were phenotypically normal.


Results: Karyotype analysis and chromosomal microarray analysis found no chromosomal structural abnormalities (46, XY) and no pathogenic copy number variations (CNVs) in the proband. Whole-exome sequencing identified a novel homozygous single nucleotide deletion (c.2662delC) in exon 2 of the RAG1 gene in the proband. Sanger sequencing confirmed that both the proband parents were carrying this variant in a heterozygous state. This variant was not identified in two elder sisters and one elder brother of the proband and in the 100 ethnically matched normal healthy individuals. This novel homozygous deletion (c.2662delC) leads to the frameshift, which finally results in the formation of the truncated protein (p.Leu888Phefs*3) V(D)J recombination-activating protein 1 with 890 amino acids compared with the wildtype V(D)J recombination-activating protein 1 of 1043 amino acids. Hence, it is a loss-of-function variant.


Conclusions: Our present study expands the mutational spectrum of the RAG1 gene associated with OS. We also strongly suggested the importance of whole-exome sequencing for the genetic screening of patients with OS.

Abstract 133 | PDF Downloads 130 HTML Downloads 8 XML Downloads 6

References

1. Dalal I, Tasher D, Somech R, Etzioni A, Garti BZ, Lev D, et al. Novel mutations in RAG1/2 and ADA genes in Israeli patients presenting with T-B-SCID or Omenn syndrome. Clin Immunol. 2011;140(3):284–90. 10.1016/j.clim.2011.04.011

2. Cirillo E, Giardino G, Gallo V, D’Assante R, Grasso F, Romano R, et al. Severe combined immunodeficiency-an update. Ann N Y Acad Sci. 2015;1356:90–106. 10.1111/nyas.12849

3. International union of immunological societies expert committee on primary immunodeficiencies, Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124(6):1161–78. 10.1016/j.jaci.2009.10.013

4. Chinn IK, Shearer WT. Severe combined immunodeficiency disorders. Immunol Allergy Clin North Am. 2015;35(4):671–94. 10.1016/j.iac.2015.07.002

5. Van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-yano K, et al. A DNA-PKcs mutation in a radio-sensitive T-B-SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest. 2008;119(1):91–8. 10.1172/JCI37141

6. Sharapova SO, Guryanova IE, Pashchenko OE, Kondratenko IV, Kostyuchenko IV, Rodina YA, et al. Molecular characteristics, clinical and immunologic manifestations of 11 children with Omenn syndrome in East Slavs (Russia, Belarus, Ukraine). J Clin Immunol. 2016;36(1):46–55. 10.1007/s10875-015-0216-7

7. Notarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234–46. 10.1038/nri.2016.28

8. Cuperus E, Montfrans JMV, Gijn MEV, Bastiaens MT, Willigen MM, Lequit RJ, et al. Congenital erythroderma should be considered as an urgent warning sign of immunodeficiency: a case of Omenn syndrome. Eur J Dermatol. 2017;27(3):313–14. 10.1684/ejd.2017.2992

9. Shen J, Jiang L, Gao Y, Ou R, Yu S, Yang B, et al. A novel RAG1 mutation in a compound heterozygous status in a child with omenn syndrome. Front Genet. 2019;10:913. 10.3389/fgene.2019.00913

10. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG proteins and V (D) J recombination: complexes, ends, and transposition. Annu Rev Immunol. 2000;18:495–527. 10.1146/annurev.immunol.18.1.495

11. Geier CB, Piller A, Linder A, Sauerwein KM, Eibl MM, Wolf HM. Leaky RAG deficiency in adult patients with impaired antibody production against bacterial polysaccharide antigens. PLoS One. 2015;10(7):e0133220. 10.1371/journal.pone.0133220

12. IJspeert H, Driessen GJ, Moorhouse MJ, Hartwig NG, WolskaKusnierz B, Kalwak K, et al. Similar recombination-activating gene (RAG) mutations result in similar immunobiological effects but in different clinical phenotypes. J Allergy Clin Immunol. 2014;133(4):1124–33. 10.1016/j.jaci.2013.11.028

13. Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell. 2013;152(3):417–29. 10.1016/j.cell.2013.01.007

14. Meshaal SS, El Hawary RE, Abd Elaziz D, Eldash A, Alkady R, Lotfy S, et al. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol. 2019;195(2):202–12. 10.1111/cei.13222

15. Lee YN, Frugoni F, Dobbs K, Tirosh I, Du L, Ververs FA, et al. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci Immunol. 2016;1(6):eaah6109. 10.1126/sciimmunol.aah6109

16. Miao J, Ying B, Li R, Tollefson AE, Spencer JF, Wold WSM, et al. Characterization of an N-terminal non-core domain of RAG1 gene disrupted Syrian hamster model generated by CRISPR Cas9. Viruses. 2018;10(5):243. 10.3390/v10050243

17. Zhang R, Chen S, Han P, Chen F, Kuang S, Meng Z, et al. Whole exome sequencing identified a homozygous novel variant in CEP290 gene causes Meckel syndrome. J Cell Mol Med. 2020;24(2):1906–16. 10.1111/jcmm.14887

18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. 10.1038/gim.2015.30

19. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2. 10.1038/nmeth.2890

20. Omenn GS. Family reticuloendotheliosis with eosinophilia. N Engl J Med. 1965;273:427–32. 10.1056/NEJM196508192730806

21. Corneo B, Moshous D, Güngör T, Wulffraat N, Philippet P, Le Deist F, et al. Identical mutations in RAG1 or RAG2 genes leading to defective V (D) J recombinase activity can cause either TB–severe combined immune deficiency or Omenn syndrome. Blood. 2001;97(9):2772–6. 10.1182/blood.V97.9.2772

22. Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B. et al. An immunodeficiency disease with rag mutations and granulomas. N Engl J Med. 2008;358(19):2030–8. 10.1056/NEJMoa073966

23. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. 10.1038/nature19057

24. John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, et al. Unrelated hematopoietic cell transplantation in a patient with combined immunodeficiency with granulomatous disease and autoimmunity secondary to rag deficiency. J Clin Immunol. 2016;36(7):725–32. 10.1007/s10875-016-0326-x

25. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med. 2014;211(11):2137–49. 10.1084/jem.20140520

26. Chilosi M, Facchetti F, Notarangelo LD, Romaqnani S, Del PG, Almeriqoqna F, et al. CD30 cell expression and abnormal soluble CD30 serum accumulation in Omenn’s syndrome: evidence for a T helper 2-mediated condition. Eur J Immunol. 1996;26(2):329–34. 10.1002/eji.1830260209

27. Zhang Z, Zhao X, Jiang L, Liu E, Cui Y, Wang M, et al. Clinical characteristics and molecular analysis of three Chinese children with Omenn syndrome. Pediatr Allergy Immunol. 2011;22(5): 482–7. 10.1111/j.1399-3038.2010.01126.x

28. Anna S, Magdalena RZ, Monika K, Gruca A, Grabowska A, Lenart M, et al. Mutation c.256_257delAA in rag1 gene in Polish children with severe combined immunodeficiency: diversity of clinical manifestations.Arch Immunol Ther Exp. 2016;64(Suppl 1):177–83. 10.1007/s00005-016-0447-1

29. Khan TA, Iqbal A, Rahman H, Cabral MO, Ishfag M, Muhammad N. Novel rag1 mutation and the occurrence of mycobacterial and Chromobacterium violaceum infections in a case of leaky SCID. Microb Pathog. 2017;109:114–9. 10.1016/j.micpath.2017.05.033

30. Lawless D, Geier CB, Farmer JR, Allen HL, Thwaites D, Atschekzei F, et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol. 2018;141(6):2303–6. 10.1016/j.jaci.2018.02.007

31. Picard C, Gaspar HB, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128. 10.1007/s10875-017-0464-9

32. Conley ME, Casanova JL. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23. 10.1016/j.coi.2014.05.004

33. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30–5. 10.1038/ng.499

34. Dai Y, Liang S, Dong X, Zhao Y, Ren H, Guan Y, et al. Whole exome sequencing identified a novel DAG1 mutation in a patient with rare, mild and late age of onset muscular dystrophy-dystroglycanopathy. J Cell Mol Med. 2019;23(2):811–8. 10.1111/jcmm.13979