Correlation analysis of TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α in refractory chronic rhinosinusitis: A retrospective study

Main Article Content

Wulin Wen
Simin Zhu
Ruixia Ma
Lixin Wang
Xueliang Shen
Yongchun Li
Ningyu Feng
Le Wang
Ming Liu
Lina Xie
Xueqiang Zhang

Keywords

correlation analysis, interleukin, matrix metalloprotein 9, refractory chronic rhinosinusitis, tissue inhibitor of metalloproteinases 1, transforming growth factor-β

Abstract

Objective: To investigate the potential correlation of transforming growth factor-β (TGF-β), matrix metalloprotein 9 (MMP-9), tissue inhibitor of metalloproteinases 1 (TIMP-1), Interleukin 1 (IL-1), IL-4, IL-6, IL-17, and tumor necrosis factor alpha (TNF-α) in refractory chronic rhinosinusitis.


Methods: A total of 150 participants were retrospectively included in this study from August 2018 to February 2020. The people enrolled were equally allocated into refractory group (patients with refractory chronic rhinosinusitis), chronic group (patients with chronic rhinosinusitis), and control group (normal people). The level of TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α were recorded. The unconditional multivariate binary logistic regression was used to analyze the factors affecting refractory chronic rhinosinusitis.


Results: The Davos score, T&T olfactometer threshold test, and Lund-Mackay CT scores in refractory group were significantly higher than the chronic group (P<0.05). The level of TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α in the refractory group were significantly higher than the chronic group and the control group (all P<0.05). Similarly, the level of the above mentioned indexes in the chronic group were significantly higher than the control group (P<0.05). The Davos score, T&T olfactometer threshold test score, Lund-Mackay CT score, and the level of TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α positively correlated with refractory chronic rhinosinusitis. Moreover, the unconditional multivariate binary logistic regression showed that the influencing factors of refractory chronic rhinosinusitis included TGF-β1, MMP-9, TIMP-1, IL-1, IL-4, IL-6, IL-17, and TNF-α.


Conclusion: The findings of the present study provide evidence for TGF-β1, MMP-9, TIMP-1, IL-4, IL-6, IL-17, and TNF-α as the influencing factors of refractory chronic rhinosinusitis.

Abstract 299 | PDF Downloads 158 HTML Downloads 42 XML Downloads 4

References

1. Fujieda S, Imoto Y, Kato Y, Ninomiya T, Tokunaga T, Tsutsumiuchi T, et al. Eosinophilic chronic rhinosinusitis. Allergology international:official journal of the Japanese Society of Allergology. 2019;68:40312. 10.1016/j.alit.2019.07.002

2. Chen H, Zhou B, Huang Q, Li C, Wu Y, Huang Z, et al. Efficacy and Safety of Long-Term Low-Dose Clarithromycin in Patients With Refractory Chronic Sinusitis After Endoscopic Sinus Surgery: A Prospective Clinical Trial. Ear Nose Throat J. 2021:1455613211032020. 10.1177/01455613211032020

3. Shi JB, Fu QL, Zhang H, Cheng L, Wang YJ, Zhu DD, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy. 2015;70:5339. 10.1111/all.12577

4. Safi C, Zheng Z, Dimango E, Keating C, Gudis DA. Chronic Rhinosinusitis in Cystic Fibrosis: Diagnosis and Medical Management. Medical sciences (Basel, Switzerland). 2019;7. 10.3390/medsci7020032

5. Galli M, De Soccio G, Cialente F, Candelori F, Federici FR, Ralli M, et al. Chronic maxillary sinusitis of dental origin and oroantral fistula: The results of combined surgical approach in an Italian university hospital. Bosn J Basic Med Sci. 2020;20:52430. 10.17305/bjbms.2020.4748

6. Tabaee A, McCoul ED. Refractory Chronic Rhinosinusitis. Otolaryngol Clin North Am. 2017;50:xvii-xviii. 10.1016/j.otc.2016.11.001

7. Smith KA, Rudmik L. Medical therapy, refractory chronic rhinosinusitis, and productivity costs. Curr Opin Allergy Clin Immunol. 2017;17:511. 10.1097/ACI.0000000000000329

8. Halderman A, Lane AP. Genetic and Immune Dysregulation in Chronic Rhinosinusitis. Otolaryngol Clin North Am. 2017;50:1328. 10.1016/j.otc.2016.08.009

9. Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137:144956.e4. 10.1016/j.jaci.2015.12.1324

10. Li Z, Zhang X, Li Z, Peng A, Zhang L, Deng Y, et al. Comparative study of Pauwels type III femoral neck fractures managed by short dynamic hip screw with fibula bone graft or cannulated screws in young adults. Annals of translational medicine. 2020;8:681. 10.21037/atm-19-3344

11. Takagi SF. A standardized olfactometer in Japan. A review over ten years. Ann N Y Acad Sci. 1987;510:1138. 10.1111/j.1749-6632.1987.tb43476.x

12. Bhattacharyya N. Test-retest reliability of computed tomography in the assessment of chronic rhinosinusitis. Laryngoscope. 1999;109:10558. 10.1097/00005537-199907000-00008

13. Lund VJ, Kennedy DW. Quantification for staging sinusitis. The Staging and Therapy Group. Ann Otol Rhinol Laryngol Suppl. 1995;167:1721. 10.1177/000348949510410s02

14. Thwin M, Weitzel EK, McMains KC, Athanasiadis T, Psaltis A, Field J, et al. Validating the use of report-derived Lund-MacKay scores. American journal of rhinology & allergy. 2009;23:335. 10.2500/ajra.2009.23.3255

15. Chen C, Yu L, Tang X, Liu MZ, Sun LZ, Liu C, et al. Dynamic hip system blade versus cannulated compression screw for the treatment of femoral neck fractures: A retrospective study. Acta Orthop Traumatol Turc. 2017;51:3817. 10.1016/j.aott.2017.07.006

16. Heath J, Hartzell L, Putt C, Kennedy JL. Chronic Rhinosinusitis in Children: Pathophysiology, Evaluation, and Medical Management. Current allergy and asthma reports. 2018;18:37. 10.1007/s11882-018-0792-8

17. Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. 2018;73:9931002. 10.1111/all.13373

18. Ito T, Nishiyama C, Nishiyama M, Matsuda H, Maeda K, Akizawa Y, et al. Mast cells acquire monocyte-specific gene expression and monocyte-like morphology by overproduction of PU.1. J Immunol. 2005;174:37683. 10.4049/jimmunol.174.1.376

19. Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, et al. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood. 2011;117:705362. 10.1182/blood-2010-12-326629

20. Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda, Md). 2016;31:23345. 10.1152/physiol.00061.2014

21. Piski Z, Gerlinger I, Nepp N, Farkas K, Weber R. TNF-Alpha Inhibitors and Rhinosinusitis-A Systematic Review and Meta-Analysis. American journal of rhinology & allergy. 2020;34:43642. 10.1177/1945892419898988

22. Qing X, Zhang Y, Peng Y, He G, Liu A, Liu H. Mir-142-3p Regulates Inflammatory Response by Contributing to Increased TNF-α in Chronic Rhinosinusitis With Nasal Polyposis. Ear Nose Throat J. 2021;100:Np50-np6. 10.1177/0145561319847972

23. Mohamad SA, Safwat MA, Elrehany M, Maher SA, Badawi AM, Mansour HF. A novel nasal co-loaded loratadine and sulpiride nanoemulsion with improved downregulation of TNF-α, TGF-β and IL-1 in rabbit models of ovalbumin-induced allergic rhinitis. Drug delivery. 2021;28:22939. 10.1080/10717544.2021.1872741

24. Kariyawasam HH, James LK. Dupilumab: Clinical Efficacy of Blocking IL-4/IL-13 Signalling in Chronic Rhinosinusitis with Nasal Polyps. 2020;14:175769. 10.2147/DDDT.S243053

25. Tian TF, Yuan Q, Ye J. [Relationship and significance among IL-6,PI3K/Akt and GSK 3β in chronic rhinosinusitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016;30:185964. 10.13201/j.issn.1001-1781.2016.23.006

26. Gong GQ, Ren FF, Wang YJ, Wan L, Chen S, Yuan J, et al. Expression of IL-17 and syndecan-1 in nasal polyps and their correlation with nasal polyps. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2017;37:4128. 10.1007/s11596-017-1749-1

27. Can IH, Ceylan K, Caydere M, Samim EE, Ustun H, Karasoy DS. The expression of MMP-2, MMP-7, MMP-9, and TIMP-1 in chronic rhinosinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 2008;139:2115. 10.1016/j.otohns.2008.04.032

28. Eisenberg G, Pradillo J, Plaza G, Lizasoain I, Moro MA. [Increased expression and activity of MMP-9 in chronic rhinosinusitis with nasal polyposis]. Acta Otorrinolaringol Esp. 2008;59:4447. 10.1016/S2173-5735(08)70270-9

29. Li J, Liu X, Sha M, Li Y. The balance between HGF and TGF-β1 acts as a switch in the tissue remodeling of chronic rhinosinusitis. Int J Clin Exp Pathol. 2019;12:93340.