Shengmai Powder regulates alveolar macrophage PPAR-γ and improves the chronic inflammatory state of chronic obstructive pulmonary disease

Main Article Content

Dongmei Liu
Zongwei Liu
Xunxun Ma
Shengjie Wang
Jie Lin
Xiuyan Shi
Xiaoyong Xu

Keywords

alveolar macrophages, COPD, inflammation, NF-κB, phagocytosis, PPARγ, SMP

Abstract


This study examines the therapeutic effects of Shengmai Powder (SMP) on both in vitro and in vivo models of chronic obstructive pulmonary disease (COPD) and the underlying mechanisms. Cigarette smoke and cigarette extracts were used to create in vitro and in vivo models of COPD. ELISA was used to measure the levels of pro-inflammatory factors (IL-6, TNF-α, and IL-1β) in mouse lung tissue and alveolar macrophages. Flow cytometry assessed the phagocytic capacity of alveolar macrophage. Western blotting was used to analyze the expression of RhoA, PPARγ, IκBα, p-IκBα, P65, and p-P65 in alveolar. The results show that SMP reversed the increased levels of pro-inflammatory factors (IL-6, TNF-α, and IL-1β) in mouse lung tissue and alveolar macrophages induced by cigarette smoke and cigarette extract. SMP also restored the decreased fluorescence intensity and RhoA levels in alveolar macrophages caused by cigarette extract. Additionally, SMP increased PPARγ expression and decreased IκBα and P65 phosphorylation in alveolar macrophages exposed to cigarette extract. Also, the effects of SMP were reversed by PPARγ inhibitors. The study concluded that SMP regulates alveolar macrophage phagocytic function through the PPAR-γ/NF-κB pathway, thereby improving the chronic inflammatory state of COPD.


Abstract 336 | PDF Downloads 454 HTML Downloads 0 XML Downloads 5

References

1. Lareau SC, Fahy B, Meek P, Wang A. Chronic obstructive pulmonary disease (COPD). Am J Respir Crit Care Med. 2019;199(1):P1–P2. 10.1164/rccm.1991P1

2. Mannino DM, Buist AS. Global burden of COPD: Risk factors, prevalence, and future trends. Lancet. 2007;370(9589):765–73. 10.1016/S0140-6736(07)61380-4

3. Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:995–1013. 10.2147/COPD.S82518

4. Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, et al. Regenerative metaplastic clones in COPD lung drive inflammation and fibrosis. Cell. 2020;181(4):848–64.e18. 10.1016/j.cell.2020.03.047

5. Park EJ, Park YJ, Lee SJ, Lee K, Yoon C. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55–66. 10.1016/j.toxlet.2018.12.007

6. Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: From mice to humans. Immunology. 2020;160(2):126–38. 10.1111/imm.13154

7. Ghosh B, Gaike AH, Pyasi K, Brashier B, Das VV, Londhe JD, et al. Bacterial load and defective monocyte-derived macrophage bacterial phagocytosis in biomass smoke--related COPD. Eur Respir J. 2019;53(2): 1702273. 10.1183/13993003.02273-2017

8. Cao X, Wang Y, Chen Y, Zhao M, Liang L, Yang M, et al. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. J Ethnopharmacol. 2023;307:116229. 10.1016/j.jep.2023.116229

9. Zhang SY, Yang KL, Long ZY, Li WQ, Huang HY. Use of a systematic pharmacological methodology to explore the mechanism of Shengmai Powder in treating diabetic cardiomyopathy. Med Sci Monit. 2020;26:e919029. 10.12659/MSM.919029

10. Zhang Z, Song Y, Zhang X, Wang S, Jia Z, Wang L, et al. Optimized new Shengmai powder ameliorates myocardial fibrosis in rats with heart failure by inhibition of the MAPK signaling pathway. J Ethnopharmacol. 2024;319(Pt 1):117210. 10.1016/j.jep.2023.117210

11. Wang K, Li L, Wang Y, Fang G, Wei M, Ding H, et al. Effect of Baihe Gujin decoction combined with Shengmai powder on the expression of IL-1beta and IL-1Ra in peripheral blood CD14+ monocytes from patients with pulmonary tuberculosis. Cell Mol Biol (Noisy-le-grand). 2022;68(2):60–3. 10.14715/cmb/2022.68.2.9

12. Li L, Zhang Y, Gong J, Yang G, Zhi S, Ren D, et al. Cpt1a alleviates cigarette smoke-induced chronic obstructive pulmonary disease. Exp Ther Med. 2023;25(1):54. 10.3892/etm.2022.11753

13. Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, et al. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci. 2021;269:119090. 10.1016/j.lfs.2021.119090

14. Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ, et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol. 2023;20(1):38–50. 10.1038/s41423-022-00946-2

15. Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3(10):733–44. 10.1038/nrc1190

16. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–59. 10.1146/annurev.pathol.4.110807.092145

17. Hacievliyagil SS, Gunen H, Mutlu LC, Karabulut AB, Temel I. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir Med. 2006;100(5):846–54. 10.1016/j.rmed.2005.08.022

18. Karadag F, Karul AB, Cildag O, Yilmaz M, Ozcan H. Biomarkers of systemic inflammation in stable and exacerbation phases of COPD. Lung. 2008;186(6):403–9. 10.1007/s00408-008-9106-6

19. Li Y, Yang Y, Guo T, Weng C, Yang Y, Wang Z, et al. Heme oxygenase-1 determines the cell fate of ferroptotic death of alveolar macrophages in COPD. Front Immunol. 2023;14:1162087. 10.3389/fimmu.2023.1162087

20. Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74(7):1249–56. 10.1111/all.13760

21. Berenson CS, Kruzel RL, Eberhardt E, Dolnick R, Minderman H, Wallace PK, et al. Impaired innate immune alveolar macrophage response and the predilection for COPD exacerbations. Thorax. 2014;69(9):811–18. 10.1136/thoraxjnl-2013-203669

22. Furth PA. Peroxisome proliferator-activated receptor gamma and BRCA1. Endocr Relat Cancer. 2019;26(2):R73–R79. 10.1530/ERC-18-0449

23. He S, Tian R, Zhang X, Yao Q, Chen Q, Liu B, et al. PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. Clin Immunol. 2023;250:109293. 10.1016/j.clim.2023.109293

24. Luo J, Wang J, Zhang J, Sang A, Ye X, Cheng Z, et al. Nrf2 deficiency exacerbated CLP-induced pulmonary injury and inflammation through autophagy-and NF-κB/PPARγ-mediated macrophage polarization. Cells. 2022;11(23): 3927. 10.3390/cells11233927

25. Xu H, Chen X, Liu D, Yang Y. Hispidulin protective impact on sepsis induced acute kidney injury is mediated by regulation of AKT and NF-κB pathway. Signa Vitae. 2023;19(6):152–9. 10.22514/sv.2023.109

26. Yao H, Rahman I. Current concepts on the role of inflammation in COPD and lung cancer. Curr Opin Pharmacol. 2009;9(4):375–83. 10.1016/j.coph.2009.06.009