Unveiling the hidden power of noncoding RNAs in pediatric respiratory diseases

Main Article Content

Shishu Yu
Lili Chen
Mingyao Zhang
Yu Lu

Keywords

biomarker, noncoding RNAs, pediatric respiratory diseases, respiratory system

Abstract

Respiratory diseases in children are common health problems that significantly impact their quality of life and health status, and this has its own unique challenges compared to adults. A growing body of research has focused on epigenetic mechanisms that relate with the development of various diseases, such as pediatric respiratory diseases. Noncoding RNAs (ncRNAs), especially long noncoding RNAs, microRNA, and circular RNA, are reported to play a regulatory role in pediatric respiratory diseases whose mutations or aberrant expressions are strongly associated with the development of these diseases. In this review, we mainly discussed the functions of these three ncRNAs in pediatric respiratory diseases.

Abstract 157 | PDF Downloads 291 HTML Downloads 0 XML Downloads 5

References

1 Ding L, Wang R, Shen D, Cheng S, Wang H, Lu Z, et al. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis. 2021;12:590. 10.1038/s41419-021-03854-x

2 Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94. 10.1016/j.cell.2014.03.008

3 Zhang M, Han Y. MicroRNAs in chronic pediatric diseases (review). Exp Ther Med. 2024;27:100. 10.3892/etm.2024.12388

4 Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, et al. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett. 2023;28:37. 10.1186/s11658-023-00447-8

5 Zhang P, Wu W, Chen Q, Chen M. Noncoding RNAs and their integrated networks. J Integr Bioinform. 2019;16(3):20190027. 10.1515/jib-2019-0027

6 Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. Wiley Interdiscip Rev RNA. 2024;15:e1847. 10.1002/wrna.1847

7 Sonego M, Pellegrin MC, Becker G, Lazzerini M. Risk factors for mortality from acute lower respiratory infections (ALRI) in children under five years of age in low-and middle-income countries: A systematic review and meta-analysis of observational studies. PloS One. 2015;10:e0116380. 10.1371/journal.pone.0116380

8 Brennan LC, O’Sullivan A, MacLoughlin R. Cellular therapy for the treatment of paediatric respiratory disease. Int J Mol Sci. 2021;22(16):8906. 10.3390/ijms22168906

9 GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Resp Med. 2020;8:585–96. 10.1016/S2213-2600(20)30105-3

10 Scotet V, L’Hostis C, Férec C. The changing epidemiology of cystic fibrosis: Incidence, survival and impact of the CFTR gene discovery. Genes (Basel). 2020;11(6):589. 10.3390/genes11060589

11 Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16:45–56. 10.1038/ni.3049

12 Lin R, Guan R, Liu X, Zhao B, Guan J, Lu L. Significant rise of the prevalence and clinical features of childhood asthma in Qingdao China: Cluster sampling investigation of 10,082 children. BMC Public Health. 2014;14:1002. 10.1186/1471-2458-14-1002

13 Haktanir Abul M, Phipatanakul W. Severe asthma in children: Evaluation and management. Allergol Int. 2019;68:150–7. 10.1016/j.alit.2018.11.007

14 Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7. 10.1016/j.jaci.2017.08.034

15 Kho AT, McGeachie MJ, Moore KG, Sylvia JM, Weiss ST, Tantisira KG. Circulating microRNAs and prediction of asthma exacerbation in childhood asthma. Resp Res. 2018;19:128. 10.1186/s12931-018-0828-6

16 Tiwari A, Hobbs BD, Li J, Kho AT, Amr S, Celedón JC, et al. Blood miRNAs are linked to frequent asthma exacerbations in childhood asthma and adult COPD. Noncoding RNA. 2022;8(2):27. 10.3390/ncrna8020027

17 Mendez KM, Begum S, Tiwari A, Sharma R, Chen Q, Kelly RS, et al. Metabolite signatures associated with microRNA miR-143-3p serve as drivers of poor lung function trajectories in childhood asthma. EBioMedicine. 2024;102:105025. 10.1016/j.ebiom.2024.105025

18 Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, et al. Proinflammatory role for LET-7 microRNAS in experimental asthma. J Biol Chem. 2010;285:30139–49. 10.1074/jbc.M110.14569810.1074/jbc.N110.145698

19 Sawant DV, Yao W, Wright Z, Sawyers C, Tepper RS, Gupta SK, et al. Serum MicroRNA-21 as a biomarker for allergic inflammatory disease in children. MicroRNA (Shariqah, UAE). 2015;4:36–40. 10.2174/2211536604666150220232507

20 Chiba Y. Noncoding RNAs and bronchial smooth muscle hyperresponsiveness in allergic bronchial asthma. Nihon Yakurigaku Zasshi Folia Pharmacol Japonica. 2020;155:364–8. 10.1254/fpj.20053

21 Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem. 2010;285:29336–47. 10.1074/jbc.M110.101147

22 Hu R, Pan W, Fedulov AV, Jester W, Jones MR, Weiss ST, et al. MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J. 2014;28:2347–57. 10.1096/fj.13-247247

23 Zheng R, Du M, Tian M, Zhu Z, Wei C, Chu H, et al. Fine particulate matter induces childhood asthma attacks via extracellular vesicle-packaged Let-7i-5p-mediated modulation of the MAPK signaling pathway. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2022;9:e2102460. 10.1002/advs.202102460

24 Li J, Panganiban R, Kho AT, McGeachie MJ, Farnam L, Chase RP, et al. Circulating microRNAs and treatment response in childhood asthma. Am J Resp Crit Care Med. 2020;202:65–72. 10.1164/rccm.201907-1454OC

25 Sharma R, Tiwari A, Kho AT, Celedón JC, Weiss ST, Tantisira KG, et al. Systems genomics reveals microRNA regulation of ICS response in childhood asthma. Cells. 2023;12(11):1505. 10.3390/cells12111505

26 Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91. 10.1038/s41576-019-0158-7

27 Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836. 10.15252/embj.2018100836

28 Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, et al. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022;21:108. 10.1186/s12943-022-01582-0

29 Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, et al. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci. 2023;19:2879–96. 10.7150/ijbs.84994

30 Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res. 2023;197:106946. 10.1016/j.phrs.2023.106946

31 Liang Q, Fu J, Wang X, Liu L, Xiao W, Gao Y, et al. circS100A11 enhances M2a macrophage activation and lung inflammation in children with asthma. Allergy. 2023;78:1459–72. 10.1111/all.15515

32 Wang R, Tan Y, Bao X, Xiong S, Liang R, Cai M, et al. Circ_0000029 interacts with the miR-576-5p/KCNA1 axis to hamper the development of pediatric asthma in an asthma-like in vitro assessment. Ann Clin Lab Sci. 2023;53:200–11.

33 Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: A review. Brief Bioinform. 2022;23(6):bbac364. 10.1093/bib/bbac364

34 Breuer J, Rossbach O. Production and purification of artificial circular RNA sponges for application in molecular biology and medicine. Methods Protoc. 2020;3(2):42. 10.3390/mps3020042

35 Wu T, Du Y. LncRNAs: From basic research to medical application. Int J Biol Sci. 2017;13:295–307. 10.7150/ijbs.16968

36 Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, et al. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev. 2022;65:61–74. 10.1016/j.cytogfr.2022.04.003

37 Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407. 10.1016/j.cell.2018.01.011

38 Zheng P, Huang C, Leng D, Sun B, Zhang XD. Transcriptome analysis of peripheral whole blood identifies crucial lncRNAs implicated in childhood asthma. BMC Med Genom. 2020;13:136. 10.1186/s12920-020-00785-y

39 Yang Y, Sun Z, Ren T, Lei W. Differential expression of lncRNA CASC2 in the serum of childhood asthma and its role in airway smooth muscle cells proliferation and migration. J Asthma Allergy. 2022;15:197–207. 10.2147/JAA.S337236

40 Chen Z, Fan N, Shen G, Yang J. Silencing lncRNA CDKN2B-AS1 alleviates childhood asthma progression through inhibiting ZFP36 promoter methylation and promoting NR4A1 expression. Inflammation. 2023;46:700–17. 10.1007/s10753-022-01766-2

41 Wang X, Li W, Sun S, An H. Inter-correlation of lncRNA THRIL with microRNA-34a and microRNA-125b and their relationship with childhood asthma risk, severity, and inflammation. Allergol Immunopathol. 2023;51(1):187–94. 10.15586/aei.v51i1.736

42 Dai B, Sun F, Cai X, Li C, Liu F, Shang Y. Long noncoding RNA PTTG3P/miR-192-3p/CCNB1 axis is a potential biomarker of childhood asthma. Int Immunopharmacol. 2021;101:108229. 10.1016/j.intimp.2021.108229

43 Zeng H, Wang Y, Gu Y, Wang J, Zhang H, Gao H, et al. Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci. 2019;218:25–30. 10.1016/j.lfs.2018.08.013

44 Zheng R, Gao F, Xiao Y, Liang J, Mao Z, Gan C, et al. PM(2.5)-derived exosomal long noncoding RNA PAET participates in childhood asthma by enhancing DNA damage via m(6)A-dependent OXPHOS regulation. Environ Int. 2024;183:108386. 10.1016/j.envint.2023.108386

45 Tiwari A, Li J, Kho AT, Sun M, Lu Q, Weiss ST, et al. COPD-associated miR-145-5p is downregulated in early-decline FEV(1) trajectories in childhood asthma. J Allergy Clin Immunol. 2021;147:2181–90. 10.1016/j.jaci.2020.11.048

46 He L, Liu J, Wang X, Wang Y, Zhu J, Kang X. Identifying a novel serum microRNA biomarker panel for the diagnosis of childhood asthma. Exp Biol Med (Maywood, NJ). 2022;247:1732–40. 10.1177/15353702221114870

47 Elbehidy RM, Youssef DM, El-Shal AS, Shalaby SM, Sherbiny HS, Sherief LM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14. 10.1016/j.molimm.2015.12.015

48 Eldosoky MA, Hammad R, Rushdi A, Ibrahim HF, Tawfeik AM, Mora A, et al. MicroRNA-146a-5p and microRNA-210-3p correlate with T regulatory cells frequency and predict asthma severity in Egyptian pediatric population. J Asthma Allergy. 2023;16:107–21. 10.2147/JAA.S398494

49 Zhang D, Wu Y, Sun G. miR-192 suppresses T follicular helper cell differentiation by targeting CXCR5 in childhood asthma. Scand J Clin Lab Invest. 2018;78(3):236–42. 10.1080/00365513.2018.1440628

50 Karam RA, Abd Elrahman DM. Differential expression of miR-155 and Let-7a in the plasma of childhood asthma: Potential biomarkers for diagnosis and severity. Clin Biochem. 2019;68:30–6. 10.1016/j.clinbiochem.2019.04.007

51 Wang T, Zhou Q, Shang Y. Downregulation of miRNA-451a promotes the differentiation of CD4+ T cells towards Th2 cells by upregulating ETS1 in childhood asthma. J Innate Immun. 2021;13:38–48. 10.1159/000509714

52 Kang Y, Bai M, Deng L, Fan L, Wang X. MiRNA-21 regulates bronchial epithelial cell proliferation by activating Tgfβ1/Smad signaling pathway and its correlation with asthma severity in children. Iran J Public Health. 2021;50(10):1973–82. 10.18502/ijph.v50i10.7497

53 Wang T, Zhou Q, Shang Y. MiRNA-451a inhibits airway remodeling by targeting Cadherin 11 in an allergic asthma model of neonatal mice. Int Immunopharmacol. 2020;83:106440. 10.1016/j.intimp.2020.106440

54 Huang Z, Cao Y, Zhou M, Qi X, Fu B, Mou Y, et al. Hsa_circ_0005519 increases IL-13/IL-6 by regulating HSA-LET-7a-5p in CD4(+) T cells to affect asthma. Clin Exp Allergy. 2019;49:1116–27. 10.1111/cea.13445

55 Huang Z, Fu B, Qi X, Xu Y, Mou Y, Zhou M, et al. Diagnostic and therapeutic value of Hsa_circ_0002594 for T Helper 2-mediated allergic asthma. Int Arch Allergy Immunol. 2021;182:388–98. 10.1159/000511612

56 Xia L, Wang X, Liu L, Fu J, Xiao W, Liang Q, et al. lnc-BAZ2B promotes M2 macrophage activation and inflammation in children with asthma through stabilizing BAZ2B pre-mRNA. J Allergy Clin Immunol. 2021;147:921–32.e9. 10.1016/j.jaci.2020.06.034

57 Wang X, Chen J. Long noncoding RNA TUG1 promotes proliferation and migration in PDGF-BB-stimulated HASMCs by regulating miR-216a-3p/SMURF2 axis. BMC Mol Cell Biol. 2021;22:56. 10.1186/s12860-021-00396-0

58 Glasgow AMA, De Santi C, Greene CM. Noncoding RNA in cystic fibrosis. Biochem Soc Trans. 2018;46:619–30. 10.1042/BST20170469

59 Britto MT, Kotagal UR, Hornung RW, Atherton HD, Tsevat J, Wilmott RW. Impact of recent pulmonary exacerbations on quality of life in patients with cystic fibrosis. Chest. 2002;121:64–72. 10.1378/chest.121.1.64

60 Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J. 2011;438:25–32. 10.1042/BJ20110672

61 Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145,-223, and-494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol (Baltimore, MD). 2013;190:3354–62. 10.4049/jimmunol.1202960

62 Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Resp Cell Mol Biol. 2013;49:544–51. 10.1165/rcmb.2012-0430OC

63 Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PloS One. 2011;6:e26601. 10.1371/journal.pone.0026601

64 Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Nat Acad Sci Am. 2012;109:13362–7. 10.1073/pnas.1210906109

65 Glasgow AMA, De Santi C, Greene CM. Noncoding RNA in cystic fibrosis. Biochem Soc Trans. 2018;46:619–30. 10.1042/BST20170469

66 Kumar P, Bhattacharyya S, Peters KW, Glover ML, Sen A, Cox RT, et al. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells. Gene Ther. 2015;22:908–16. 10.1038/gt.2015.56

67 Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O’Neill SJ, McElvaney NG, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol (Baltimore, MD). 2010;184:1702–9. 10.4049/jimmunol.0902669

68 Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011;286:11604–15. 10.1074/jbc.M110.198390

69 Megiorni F, Cialfi S, Cimino G, De Biase RV, Dominici C, Quattrucci S, et al. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros. 2013;12(6):797–802. 10.1016/j.jcf.2013.03.007; 10.1016/S1569-1993(13)60124-1 Epub 2013 Apr 28

70 Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Expression of microRNA-93 and interleukin-8 during pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Resp Cell Mol Biol. 2014;50:1144–55. 10.1165/rcmb.2013-0160OC

71 Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Resp J. 2015;46:1350–60. 10.1183/09031936.00163414

72 Pierdomenico AM, Patruno S, Codagnone M, Simiele F, Mari VC, Plebani R, et al. microRNA-181b is increased in cystic fibrosis cells and impairs lipoxin A(4) receptor-dependent mechanisms of inflammation resolution and antimicrobial defense. Sci Rep. 2017;7:13519. 10.1038/s41598-017-14055-y

73 McKiernan PJ, Molloy K, Cryan SA, McElvaney NG, Greene CM. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int J Biochem Cell Biol. 2014;52:184–91. 10.1016/j.biocel.2014.02.022

74 Saayman SM, Ackley A, Burdach J, Clemson M, Gruenert DC, Tachikawa K, et al. Long noncoding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol Ther. 2016;24:1351–7. 10.1038/mt.2016.112

75 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: Endogenous danger signaling. Mol Med (Cambridge, MA). 2008;14:476–84. 10.2119/2008-00034.Klune

76 Wu W, Choi EJ, Lee I, Lee YS, Bao X. Noncoding RNAs and their role in respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. Viruses. 2020;12(3):345. 10.3390/v12030345

77 Esposito S, Abu Raya B, Baraldi E, Flanagan K, Martinon Torres F, Tsolia M, et al. RSV prevention in all infants: Which is the most preferable strategy? Front Immunol. 2022;13:880368. 10.3389/fimmu.2022.880368

78 Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, et al. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol. 2012;93:2346–56. 10.1099/vir.0.044255-0

79 Othumpangat S, Walton C, Piedimonte G. MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PloS One. 2012;7:e30030. 10.1371/journal.pone.0030030

80 Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci Rep. 2018;8:387. 10.1038/s41598-017-18672-5

81 Inchley CS, Sonerud T, Fjærli HO, Nakstad B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect Dis. 2015;15:150. 10.1186/s12879-015-0878-z

82 Zhang Y, Shao L. Decreased microRNA-140-5p contributes to respiratory syncytial virus disease through targeting Toll-like receptor 4. Exp Ther Med. 2018;16:993–9. 10.3892/etm.2018.6272

83 Ressel S, Kumar S, Bermúdez-Barrientos JR, Gordon K, Lane J, Wu J, et al. RNA–RNA interactions between respiratory syncytial virus and miR-26 and miR-27 are associated with regulation of cell cycle and antiviral immunity. Nucleic Acids Res. 2024;52(9):4872–88. 10.1101/2023.06.05.543706

84 Li J, Li M, Wang X, Sun M, Ma C, Liang W, et al. Long noncoding RNA NRAV promotes respiratory syncytial virus replication by targeting the MicroRNA miR-509-3p/Rab5c Axis to regulate vesicle transportation. J Virol. 2020;94(10):e00113–20. 10.1128/JVI.00113-20.

85 Tao XW, Zeng LK, Wang HZ, Liu HC. LncRNA MEG3 ameliorates respiratory syncytial virus infection by suppressing TLR4 signaling. Mol Med Rep. 2018;17:4138–44. 10.3892/mmr.2017.8303

86 Sun S, Yao M, Yuan L, Qiao J. Long-chain noncoding RNA n337374 relieves symptoms of respiratory syncytial virus-induced asthma by inhibiting dendritic cell maturation via the CD86 and the ERK pathway. Allergol Immunopathol. 2021;49:100–7. 10.15586/aei.v49i3.85

87 Yao W, Pan J, Liu Z, Dong Z, Liang M, Xia S, et al. The cellular and viral circRNAome induced by respiratory syncytial virus infection. mBio. 2021;12:e0307521. 10.1128/mBio.03075-21

88 Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, et al. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol. 2024;213:1. 10.1007/s00430-023-00784-7

89 Dremel SE, Tagawa T, Koparde VN, Hernandez-Perez C, Arbuckle JH, Kristie TM, et al. Interferon induced circRNAs escape herpesvirus host shutoff and suppress lytic infection. EMBO Rep. 2024;25:1541–69. 10.1038/s44319-023-00051-z

90 Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Noncoding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol. 2024;15:1348280. 10.3389/fphar.2024.1348280

91 Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for noncoding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol. 2024;224:116218. 10.1016/j.bcp.2024.11621810.1016/j.jpba.2024.116218

92 Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, et al. Noncoding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol. 2024;21(8):556–73. 10.1038/s41569-024-01001-5