Analysis of B cell proliferation in response to in vitro stimulation in patients with CVID

Main Article Content

Ma. Guadalupe Velásquez-Ortiz Velásquez-Ortiz https://orcid.org/0000-0002-8984-0246
Abigail J. Saldaña-Solano https://orcid.org/0000-0002-5951-4415
Patricia O’Farrill-Romanillos https://orcid.org/0000-0002-7186-1372
Diana Andrea Herrera-Sánchez https://orcid.org/0000-0003-1621-6976
Selma Scheffer-Mendoza https://orcid.org/0000-0001-6548-5721
Marco A. Yamazaki-Nakashimada https://orcid.org/0000-0002-7609-3923
Ma. Carmen Zarate-Hernández https://orcid.org/0000-0002-0105-2756
Sara E. Espinosa-Padilla https://orcid.org/0000-0003-4859-3151
Laura Berrón-Ruiz https://orcid.org/0000-0002-3290-8705

Keywords

B cells proliferation, CVID, T-dependent response, T-independent response

Abstract

Background: Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by defective antibody production and impaired differentiation of B cells. B cell proliferation is an essential step for antibody synthesis. Depending on the nature of the stimulus, their response may be either T-cell-dependent or T-cell-independent.


Methods: We studied 23 CVID patients and 14 healthy donors (HD). The patients were categorized based on their percentage of memory B cells. In addition to standard immunophenotyping of circulating human B and T cell subsets, an in vitro CFSE dilution assay was used to assess the proliferative capacity of B cells and to compare the activation of the T cell-dependent and T cell-independent response among the patients.


Results: Patients with a reduction in memory B cells exhibited an increase in follicular T cells (Tfh) and showed low proliferation in response to PKW, CpG, and SAC stimuli (Condition II) (p= 0.0073). In contrast, patients with a normal percentage of memory B cells showed a high expression of IL-21R and low proliferation in response to CPG (Condition III); IL-21, CD40L, and anti-IgM (Condition IV) stimuli (p= 0.0163 and p = 0.0475, respectively).


Conclusion: Defective proliferation in patients depends on the type of stimulus used and the phenotypic characteristics of the patients. Further studies are necessary to understand the disease mechanisms, which may guide us toward identifying genetic defects associated with CVID.

Abstract 19 | PDF Downloads 55 HTML Downloads 0 XML Downloads 1

References

1. Ameratunga R, Allan C, Woon ST. Defining common variable immunodeficiency disorders in 2020. Immunol Allergy Clin North Am. 2020; 40(3):403–20. 10.1016/j.iac.2020.03.001

2. Wiesik-Szewczyk E, Jahnz-Rózyk K. From infections to autoimmunity: Diagnostic challenges in common variable immunodeficiency. World J Clin Cases. 2020; 8(18):3942–55. 10.12998/wjcc.v8.i18.3942

3. Ebbo M, Gérard L, Carpentier S, Vély F, Cypowyj S, Farnarier C, et al. Low circulating natural killer cell counts are associated with severe disease in patients with common variable immunodeficiency. EBioMedicine. 2016; 6:222–30. 10.1016/j.ebiom.2016.02.025

4. Giovannetti A, Pierdominici M, Mazzetta F, Marziali M, Renzi C, Mileo AM, et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J Immunol. 2007; 178(6):3932–43. 10.4049/jimmunol.178.6.3932

5. Turpin D, Furudoi A, Parrens M, Blanco P, Viallard JF, Duluc D. Increase of follicular helper T cells skewed toward a Th1 profile in CVID patients with non-infectious clinical complications. Clin Immunol. 2018; 197:130–8. 10.1016/j.clim.2018.09.006

6. Unger S, Seidl M, van Schouwenburg P, Rakhmanov M, Bulashevska A, Frede N, et al. The TH1 phenotype of follicular helper T cells indicates an IFN-γ–associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol. 2018; 141(2):730–40. 10.1016/j.jaci.2017.04.041

7. Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J Allergy and Clin Immunol Pract. 2016; 4(1):38–59. 10.1016/j.jaip.2015.07.025

8. Mokhtari M, Shakeri A, Mirminachi B, Abolhassani H, Yazdani R, Grimbacher B, Aghamohammadi A. Important Factors Influencing Severity of Common Variable Immunodeficiency. Arch Iran Med. 2016;19(8):544–50.

9. Warnatz K, Denz A, Dräger R, Braun M, Groth C, Wolff-Vorbeck G, et al. Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood. 2002; 99(5):1544–51. 10.1182/blood.v99.5.1544

10. Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood. 2008; 111(1):77–85. 10.1182/blood-2007-06-091744

11. Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova JL, et al. Genetic diagnosis using whole exomesequencing in common variable immunodeficiency. Front Immunol. 2016; 7(Jun):1–9. 10.3389/fimmu.2016.00220

12. McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L. Molecular programming of B cell memory. Nat Rev Immunol. 2012; 12(1):24–34. 10.1038/nri3128

13. Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R, et al. IL-21 Induces differentiation of human naive and memory b cells into antibody-secreting plasma cells. J Immunol. 2005; 175(12):7867–79. 10.4049/jimmunol.175.12.7867

14. Lanzavecchia A, Sallusto F. Human B cell memory. Curr Opin Immunol. 2009; 21(3):298–304. 10.1016/j.coi.2009.05.019

15. Fagarasan S, Honjo T. T-independent immune response: new aspects of B cell biology. Science. 2000; 290(5489):89–92. 10.1016/j.isci.2022.105002

16. Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C, et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 2008;180(2):800–8. 10.4049/jimmunol.180.2.800

17. Ameratunga R, Allan C, Woon ST. Defining common variable immunodeficiency disorders in 2020 (Vol. 40). In Immunology and Allergy Clinics of North America. W.B. Saunders; 2020. p. 403–20.

18. Cunningham-Rundles C. Common variable immune deficiency: case studies. Hematology. 2019; 2019(1):449–56. 10.1182/hematology.2019002062

19. López-Herrera G, Segura-Méndez N, O’Farril-Romanillos P, Nuñez-Nuñez M, Zarate-Hernández M, Mogica-Martínez D, et al. Low percentages of regulatory T cells in common variable immunodeficiency ( CVID ) patients with autoimmune diseases and its association with increased numbers of CD4 + CD45RO + T and CD21 low B cells. Allergol Immunopathol. 2019; 47(5):457–66. 10.1016/j.aller.2019.01.003

20. Azizi G, Abolhassani H, Kiaee F, Tavakolinia N, Rafiemanesh H, Yazdani R, et al. Autoimmunity and its association with regulatory T cells and B cell subsets in patients with common variable immunodeficiency. Allergol Immunopathol. 2018; 46(2):127–35. 10.1016/j.aller.2017.04.004

21. Grześk E, Dąbrowska A, Urbańczyk A, Ewertowska M, Wysocki M, Kołtan S. Common variable immunodeficiency: different faces of the same disease. Postepy Dermatol Alergol. 2021; 38(5):873–80. 10.5114/ada.2021.110067

22. Warnatz K, Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom. 2008; 74(5):261–71. 10.1002/cyto.b.20432

23. Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B-and T-Cell Subset Abnormalities in Monogenic common variable immunodeficiency. Front Immunol. 2022; 13(June):1–16. 10.3389/fimmu.2022.912826

24. Azizi G, Rezaei N, Kiaee F, Tavakolinia N, Yazdani R, Mirshafiey A, et al. T-cell abnormalities in common variable immunodeficiency. J Investig Allergol Clin Immunol. 2016; 26(4):233–43. 10.18176/jiaci.0069

25. Więsik-Szewczyk E, Rutkowska E, Kwiecień I, Korzeniowska M, Sołdacki D, Jahnz-Różyk K. Patients with common variable immunodeficiency complicated by autoimmune phenomena have lymphopenia and reduced treg, Th17, and NK cells. J Clin Med. 2021; 10(15). 10.3390/jcm10153356

26. Yesillik S, Gupta S. Phenotypically defined subpopulations of circulating follicular helper T cells in common variable immunodeficiency. Immun Inflamm Dis. 2020; 8(3):441–6. 10.3389/fimmu.2017.00174

27. Ueno H. Human circulating T follicular helper cell subsets in health and disease. J Clin Immunol. 2016; 36:34–9. 10.1080/25785826.2020.1776079

28. Yesillik S, Agrawal S, Gollapudi S V., Gupta S. Phenotypic analysis of CD4+ Treg, CD8+ Treg, and Breg cells in adult common variable immunodeficiency patients. Int Arch Allergy Immunol. 2019; 180(2):150–8. 10.1159/000501457

29. Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol. 2006; 177(8):5236–47. 10.4049/jimmunol.177.8.5236

30. Clemente A, Pons J, Matamoros N, Iglesias J, Ferrer JM. B cells from common variable immunodeficiency patients fail to differentiate to antibody secreting cells in response to TLR9 ligand (CpG-ODN) or anti-CD40+IL21. Cell Immunol. 2011; 268(1):9–15. 10.1016/j.cellimm.2011.01.004

31. Cunningham-Rundles C, Radigan L, Knight AK, Zhang L, Bauer L, Nakazawa A. TLR9 activation is defective in common variable immune deficiency. J Immunol. 2006; 176(3):1978–87. 10.4049/jimmunol.176.3.1978