Studies on the effect and mechanism of CD147 on melanoma stem cells

Main Article Content

Yuan Jiang
Renyi Liang
Liqun Li
Jian Guan

Keywords

Cancer Stem Cells, Cd147, Melanoma, Side Population

Abstract

Background: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized.


Methods: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFβ1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo.


Results: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFβ1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo.


Conclusion: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFβ and notch pathways.

Abstract 353 | PDF Downloads 479 HTML Downloads 0 XML Downloads 8

References

1. Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr. 2020;30(4):291–7. 10.1615/CritRevEukaryotGeneExpr.2020028454

2. Bobos M. Histopathologic classification and prognostic factors of melanoma: a 2021 update. Ital J Dermatol Venerol. 2021;156(3):300–21. 10.23736/S2784-8671.21.06958-3

3. Elder DE, Bastian BC, Cree IA, Massi D, Scolyer RA. The 2018 World Health Organization classification of cutaneous, mucosal, and uveal melanoma: detailed analysis of 9 distinct subtypes defined by their evolutionary pathway. Arch Pathol Lab Med. 2020;144(4):500–22. 10.5858/arpa.2019-0561-RA

4. Bai X, Mao L, Guo J. Comments on Chinese guidelines for diagnosis and treatment of melanoma 2018 (English version). Chin J Cancer Res. 2019;31(5):740–1. 10.21147/j.issn.1000-9604.2019.05.03

5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. 10.3322/caac.21660

6. Aubuchon MM, Bolt LJ, Janssen-Heijnen ML, Verleisdonk-Bolhaar ST, van Marion A, van Berlo CL. Epidemiology, management and survival outcomes of primary cutaneous melanoma: a ten-year overview. Acta Chir Belg. 2017;117(1):29–35. 10.1080/00015458.2016.1242214

7. Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, et al. Revisiting miRNA association with melanoma recurrence and metastasis from a machine learning point of view. Int J Mol Sci. 2022;23(3):1299. 10.3390/ijms23031299

8. Caudron A, Battistella M, Feugeas JP, Pages C, Basset-Seguin N, Mazouz Dorval S, et al. EMMPRIN/CD147 is an independent prognostic biomarker in cutaneous melanoma. Exp Dermatol. 2016;25(8):618–22. 10.1111/exd.13022

9. Sun X, Yang P, Jiang Y. CD147 promotes melanoma cell growth via SOX4-mediated glycolytic metabolism. Trop J Pharm Res. 2021;19(12):2521–27. 10.4314/tjpr.v19i12.6

10. Lu L, Zhang J, Gan P, Wu L, Zhang X, Peng C, et al. Novel functions of CD147 in the mitochondria exacerbates melanoma metastasis. Int J Biol Sci. 2021;17(1):285–97. 10.7150/ijbs.52043

11. Gao J, Yang T, Wang X, Zhang Y, Wang J, Zhang B, et al. Identification and characterization of a subpopulation of CD133(+) cancer stem-like cells derived from SK-UT-1 cells. Cancer Cell Int. 2021;21(1):157. 10.1186/s12935-021-01817-y

12. Ma XL, Hu B, Tang WG, Xie SH, Ren N., Guo L, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):11. 10.1186/s13045-020-0845-z

13. Huang L, Lian J, Chen X, Qin G, Zheng Y, Zhang Y. WASH overexpression enhances cancer stem cell properties and correlates with poor prognosis of esophageal carcinoma. Cancer Sci. 2017;108(12):2358–65. 10.1111/cas.13400

14. Qian P, Linbo L, Xiaomei Z, Hui P. Circ_0002770, acting as a competitive endogenous RNA, promotes proliferation and invasion by targeting miR-331-3p in melanoma. Cell Death Dis. 2020;11(4):264. 10.1038/s41419-020-2444-x

15. Mou K, Ding M, Han D, Zhou Y, Mu X, Liu W, et al. miR-590-5p inhibits tumor growth in malignant melanoma by suppressing YAP1 expression. Oncol Rep. 2018;40(4):2056–66. 10.3892/or.2018.6633

16. Yu T, Zhong S, Sun Y, Sun H, Chen W, Li Y, et al. Aqueous extracts of Sanghuangporus vaninii induce S-phase arrest and apoptosis in human melanoma A375 cells. Oncol Lett. 2021;22(2):628. 10.3892/ol.2021.12889

17. Nakai S, Yamada S, Outani H, Nakai T, Yasuda N, Mae H, et al. Establishment of a novel human CIC-DUX(4) sarcoma cell line, Kitra-SRS, with autocrine IGF-1R activation and metastatic potential to the lungs. Sci Rep. 2019;9(1):15812. 10.1038/s41598-019-52143-3

18. Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1):41. 10.1186/s12943-017-0600-4

19. Vlashi E and Pajonk F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol. 2015;31:28–35. 10.1016/j.semcancer.2014.07.001

20. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, et al. Cancer stem cells–origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280. 10.3389/fimmu.2020.01280

21. Schmuck R, Warneke V, Behrens HM, Simon E, Weichert W, Röcken C. Genotypic and phenotypic characterization of side population of gastric cancer cell lines. Am J Pathol 2011;178(4): 1792–804. 10.1016/j.ajpath.2010.12.043

22. Zhou Z, Long J, Wang Y, Li Y, Zhang X, Tang L, et al. Targeted degradation of CD147 proteins in melanoma. Bioorg Chem. 2020;105:104453. 10.1016/j.bioorg.2020.104453

23. Biswas R, Chowdhury N, Mukherjee R, Bagchi A. Identification and analyses of natural compounds as potential inhibitors of TRAF6-Basigin interactions in melanoma using structure-based virtual screening and molecular dynamics simulations. J Mol Graph Model. 2018;85:281–93. 10.1016/j.jmgm.2018.09.008

24. Su J, Gao T, Jiang M, Wu L, Zeng W, Zhao S, et al. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget. 2016;7(40):64778–84. 10.18632/oncotarget.11415

25. Reger de Moura C, Landras A, Khayati F, Maskos U, Maouche K, Battistella M, et al. CD147 promotes tumor lymphangiogenesis in melanoma via PROX-1. Cancers (Basel). 2021;13(19):4859. 10.3390/cancers13194859

26. Liu N, Qi M, Li K, Zeng W, Li J, Yin M, et al. CD147 regulates melanoma metastasis via the NFAT1-MMP-9 pathway. Pigment Cell Melanoma Res. 2020;33(5):731–43. 10.1111/pcmr.12886

27. Meng Y, Fan XY, Yang LJ, Xu BQ, He D, Xu Z, et al. Detachment activated CyPA/CD147 induces cancer stem cell potential in non-stem breast cancer cells. Front Cell Dev Biol. 2020;8:543856. 10.3389/fcell.2020.543856

28. Lv Y, Wang T, Fan J, Zhang Z, Zhang J, Xu C, et al. The effects and mechanisms of SLC34A2 on maintaining stem cell-like phenotypes in CD147(+) breast cancer stem cells. Tumour Biol. 2017;39(4):1010428317695927. 10.1177/1010428317695927

29. Fan XY, He D, Sheng CB, Wang B, Wang LJ, Wu XQ, et al. Therapeutic anti-CD147 antibody sensitizes cells to chemoradiotherapy via targeting pancreatic cancer stem cells. Am J Transl Res. 2019;11(6):3543–54.

30. Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(1):9–34. 10.1038/s41571-020-0403-1

31. Ru NY, Wu J, Chen ZN, Bian H. HAb18G/CD147 is involved in TGF-β-induced epithelial-mesenchymal transition and hepatocellular carcinoma invasion. Cell Biol Int 39(1):44–51. 10.1002/cbin.10341

32. Suzuki S, Toyoma S, Tsuji T, Kawasaki Y, Yamada T. CD147 mediates transforming growth factor-β1-induced epithelial-mesenchymal transition and cell invasion in squamous cell carcinoma of the tongue. Exp Ther Med. 2019;17(4):2855–60. 10.3892/etm.2019.7230

33. Matsui WH. Cancer stem cell signaling pathways. Medicine (Baltimore). 2016;95(1, Suppl 1):S8–19. 10.1097/MD.0000000000004765

34. Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, et al. Notch1-MAPK signaling axis regulates CD133(+) cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 2016;136(12):2462–74. 10.1016/j.jid.2016.07.024

35. Wu WR, Shi XD, Zhang FP, Zhu K, Zhang R, Yu XH, et al. Activation of the Notch1-c-myc-VCAM1 signalling axis initiates liver progenitor cell-driven hepatocarcinogenesis and pulmonary metastasis. Oncogene. 2022;41(16):2340–56. 10.1038/s41388-022-02246-5