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dihydrokaempferol; Background: Globally, pneumonia has been associated as a primary cause of mortality in chil-
infantile pneumonia; dren aged less than 5 years. Dihydrokaempferol (DHK) has been proposed for being correlated
SIRTT; with the process of various diseases. Nevertheless, whether DHK has a role in the progres-
inflammation injury; sion of infantile pneumonia remains unclear. This study aimed at exploring whether DHK was
lipopolysaccharide involved in the progression of infantile pneumonia.

Methods: Human fibroblast cells WI-38 were treated with lipopolysaccharide (LPS). The viabil-
ity of WI-38 cells was measured via Cell counting kit-8. Reverse transcription-quantitative poly-
merase chain reaction was used to evaluate the levels of interleukin (IL)-1B, IL-6, and tumor
necrosis factor-a. (TNF-a). Western blot analysis revealed the protein levels of IL-1f, IL-6, TNF-
o, Bax, and cleaved-caspase 3. Flow cytometry was applied for exploring the apoptosis of
WI-38 cells. The concentrations of IL-1B, IL-6, and TNF-a were assessed via enzyme-linked-im-
munosorbent serologic assay.

Results: DHK modulated the viability of WI-38 cells in infantile pneumonia. Furthermore, we
identified that DHK treatment inversely changed LPS induction-mediated elevation on the lev-
els of inflammation biomarkers. Besides, DHK counteracted LPS-induced production of reac-
tive oxygen species (ROS) in WI-38 cells. DHK also decreased LPS-induced elevation of WI-38
cells apoptosis and mediated the levels of apoptosis-associated indexes. Moreover, modulating
sirtuin-1 (SIRT1) protein level was lowered by the induction of LPS, and was reversed by DHK
treatment. In addition, DHK counteracted LPS induction-mediated elevation of p-p65 and phos-
phorylated inhibitor of nuclear factor kappa-B kinase subunit alpha (p-lkBa) protein levels.
Conclusion: DHK alleviated LPS-induced WI-38 cells inflammation injury in infantile pneumonia
through SIRT1/NF-kB pathway. The results shed light on the implications of DHK on the preven-
tion and treatment of infantile pneumonia.
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Introduction

Globally, pneumonia has been associated as a primary
cause of mortality among children aged <5 years, with a
mortality rate of 14%."%? Although the pneumonia-related
mortality in China has decreased, it remains a significant
contributor to morbidity among children.>* According to
the World Health Organization (WHO) data, pneumonia is
responsible for more than 900,000 child deaths globally.?
Infantile pneumonia is still a significant clinical and pub-
lic health problem.¢ It is still imperative to identify reli-
able biomarkers associated with infantile pneumonia to
decrease the incidence and mortality of this disease.

As a natural compound from Chinese herbal plant
Bauhinia championii (Benth), dihydrokaempferol (DHK)
(CAS Number: 480-20-6) is a type of flavonoid with a vari-
ety of effects, such as anti-inflammatory and antioxidant
stress.”” DHK is considered as one of the essential groups
of flavonoids extracted from plants of the Rutaceae family.
DHK is found to have significant potential as a therapeutic
and pharmaceutical agent, making it an important candi-
date for the future medicine.”

Previously, DHK was proposed for being correlated with
the process of various diseases. For instance, DHK medi-
ates Kelch-like ECH-associated protein 1-nuclear factor
erythroid 2-related factor 2 (Keap1/Nrf2) pathway to ame-
liorate the progression of severe acute pancreatitis.' CCl4-
induced hepatic fibrosis is weakened by DHK by suppressing
poly(ADP-ribose) polymerase 1 (PARP-1) and its downstream
cytokines and pathways.”? DHK exerts a protective function
on liver injury induced by acetaminophen-via modulating
sirtuin-1 (SIRT1)."* Nevertheless, whether DHK has a role in
the progression of infantile pneumonia remains unclear.

The aim of this work was to appraise the regulatory
impacts of DHK on lipopolysaccharide (LPS)-triggered WI-38
cells inflammation injury in infantile pneumonia. In this
study, DHK’s participation in the development of infantile
pneumonia was analyzed. The results depicted that DHK
alleviated lipopolysaccharide (LPS)-induced WI-38 cells
inflammation injury in infantile pneumonia through mod-
ulating SIRT1/NF-xB pathway. The findings underlined the
potential importance of DHK in infantile pneumonia.

Methods
Cell culture and treatment

Added to fetal bovine serum (FBS) (10%; Gibco, Grand
Island, NE, USA), gentamycin (50 ug/mL; Invitrogen,
Carlsbad, NM, USA), antibiotic/antimycotic solution (100
units; Invitrogen), and Na pyruvate (1 mM), Dulbecco’s
modified Eagle’s medium (DMEM; Sigma-Aldrich, MO, USA)
was employed for culture of normal human fibroblast cells
WI-38 (ATCC, Manassas, VA, USA). WI-38 is a diploid human
cell line composed of fibroblasts derived from female fetal
lung tissues during the third trimester of pregnancy. WI-38
is a fibroblast that produces collagen. The cells were incu-
bated in a humidified atmosphere containing 5% CO, at
37°C. Seeded in six-well plates and incubated overnight,
LPS (10 ug/mL) was supplemented to mimic cell model for

infantile pneumonia, while cells without LPS treatment
served as a negative control. After 24 h, cell suspension
was harvested.

DHK (purity > 98.5%) was bought from Meilune (Dalian,
China). Different concentrations of DHK (5, 10, and 20 uM)
were utilized for treating WI-38 cells.

Cell counting kit-8 (CCK-8) assay

WI-38 cells were seeded in 96-well plates and cultured
for 24 h at 37°C in 5% CO,. Subsequently, each well was
treated with 10 pL of CCK-8 reagent (Beyotime, China) and
incubated for 1 h. The absorbance at 450 nm was evalu-
ated via a microplate reader.

Reverse transcription-quantitative polymerase
chain reaction (RT-qPCR)

TRIzol reagent (Invitrogen) was used for extracting RNA
from cells. TIANScript RT kit (Tiangen Biotech, Beijing,
China) was used for reverse transcription of complementary
DNA (cDNA), followed by RT-gPCR using the SYBR® Premix
Dimmer Eraser kit (Takara, Dalian, China) on the CFX96
Touch™ RT-PCR detection system (Bio-Rad Laboratories,
Hercules, USA). The 24t method was applied for calculat-
ing the relative expression of interleukin (IL)-13, IL-6, tumor
necrosis factor-o (TNF-a), with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as control, as follows:

IL-1B
F: 5-AATCTCACAGCAGCATCTCGACAAG-3’
R: 5-TCCACGGGCAAGACATAGGTAGC-3'
IL-6

F: 5-AGTTGCCTTCTTGGGACTGATGTTG-3'
R: 5-GGTATCCTCTGTGAAGTCTCCTCTCC-3'
TNF-a

F: 5-CCACGCTCTTCTGTCTACTGAACTTC-3"
R: 5-TGGGCTACGGGCTTGTCACTC-3"
GAPDH

F: 5-AGGTCGGTGTGAACGGATTTG-3'

R: 5-GGGGTCGTTGATGGCAACA-3'

Enzyme-linked immunosorbent serological assay
(ELISA)

Concentrations of IL-13, IL-6, and TNF-o were assessed
via the following ELISA kits (MultiSciences; Biotech Co.,
Hangzhou, China): IL-6 (Cat. No. EK206/3-96), IL-13 (Cat.
No. EK201B/3-96), and TNF-a (Cat. No. EK282/3-96).

Flow cytometry

Fluorescein isothiocyanate (FITC) Annexin V apoptosis
detection kit (BD Biosciences, Franklin Lakes, NJ, USA)
was applied for investigating the apoptosis of WI-38 cells.
Digested by ethylenediaminetetraacetic acid (EDTA)-free
trypsin, WI-38 cells were rinsed in PBS at 4°C. Dyed with FITC
Annexin V (5 uL) and propidium iodide (5 uL PI) for 15 min at
indoor temperature without light, WI-38 cells were observed
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using the FACS Calibur flow cytometer (BD Biosciences, San
Jose, CA, USA). The results were analyzed via FlowjoV 1.8.1
(Becton, Dickinson, Franklin Lakes, NJ, USA).

Assessment of oxidative stress

The 2,7-DCF diacetate (DCF-DA; Sigma-Aldrich) fluores-
cence was applied for assessing oxidative stress. Cultured
with 2'-7-Dichlorodihydrofluorescein diacetate (DCFH-DA) at
37°C for 15min without light, WI-38 cells were rinsed in a
fresh medium and re-suspended using PBS (20 mM, pH 7.0).
Fluorescence microscopy (Leica Microsystems GmbH, Wetzlar,
Germany) was utilized for visualization, with fluorescence
levels detected through a fluorescence microplate reader at
488-nm excitation and 525-nm emission wavelengths.

Western blot analysis

Bicinchoninic acid (BCA) protein kit was used for deter-
mining protein concentrations. Proteins were loaded and
separated using 10% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE), followed by trans-
ferring to polyvinylidene fluoride (PVDF) membranes.
Post-sealed by bovine serum albumin (BSA, 5%) at 25°C for
1 h, primary antibodies against IL-138 (1:5000; ab254360),
IL-6 (1:5000; ab303458), TNF-o (1:5000; ab183218), Bax
(0.477 pg/mL; ab270742), cleaved-caspase 3 (1:500;
ab2302), p-p65 (1:1000; ab76302), p65 (1:1000; ab32536),
phosphorylated inhibitor of nuclear factor kappa-B kinase
subunit alpha (p-1xBca, 1:10,000; ab133462), IxBo (1:1000;
ab32518), and B-actin (1:5000; ab8226) (Abcam, Shanghai,
China) were supplemented to the membranes overnight
at 4°C. Membranes were washed with phosphate-buffered
saline solution (PBST), and horseradish peroxidase (HRP)-
conjugated affinipure goat anti-rabbit Immunoglobulin G
(IgG) secondary antibody was supplemented on the next
day. Images of the band were observed using the enhanced
chemiluminescence (ECL) detection kit and a chemidoc XRS
Imaging system (Bio-Rad Laboratories).

Statistical Analysis

GraphPad Prism 8 was used for data analysis. The data
were represented as mean + standard deviation (SD),
with the Student’s t-test used for comparing differences
between groups. The data were analyzed attributing to
the normal distribution and homogeneity of variance.
Differences between multiple groups were analyzed by
one-way Analysis of Variance (ANOVA) and Tukey’s multiple
comparisons post-test; P < 0.05 was considered statistically
significant.

Results

DHK modulated cell viability in infantile
pneumonia

The chemical structure of DHK is displayed in Figure 1A.
The viability of WI-38 cells was assessed via CCK-8 assay.
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Figure 1 DHK modulated cell viability in infantile pneumonia.
(A) The chemical structure of DHK. (B) CCK-8 assay assessed
the viability of WI-38 cells. ***P < 0.001 relative to 0-uM
DHK. (C) WI-38 cells viability was measured by CCK-8 assay.
***P < 0.001 relative to control. ##P < 0.001 relative to LPS.

The data showed that 5-, 10-, and 20-uM DHK treatment
had no obvious effect on the viability of WI-38 cells,
while 40-uM DHK treatment markedly reduced the viabil-
ity of WI-38 cells (from 99% to 70%; P < 0.001; Figure 1B).
Furthermore, the viability of WI-38 cells was evidently low-
ered due to LPS treatment (from 99% to 43%, P < 0.001),
and 10- and 20-uM DHK treatment reversed the effect of
LPS on the viability of WI-38 cells (from 43% to 74% and
85%; P < 0.001; Figure 1C). To sum up, DHK modulated the
viability of WI-38 cells in infantile pneumonia.

DHK attenuated inflammation in WI-38 cells
induced by LPS

The effect of DHK on inflammation in infantile pneumonia
was evaluated. The messenger RNA (mRNA) levels of IL-1p,
IL-6, and TNF-a were elevated because of LPS induction
(P < 0.001), and the effects were inversely changed by
5-, 10-, and 20-uM DHK treatment (P < 0.05; Figure 2A).
Similarly, the increased concentrations of IL-13, IL-6, and
TNF-o because of the induction of LPS was offset by
5-, 10-, and 20-uM DHK treatment (P < 0.01; Figure 2B).
Altogether, DHK attenuated inflammation in WI-38 cells
induced by LPS.

DHK inhibited reactive oxygen species (ROS)
induced by LPS

The treatment of 5-, 10-, and 20-uM DHK counteracted LPS-
induced production of ROS in WI-38 cells (from 1.05 to 5.83;
P < 0.001), and there was a tendency to increase amelio-
ration with the increased dose of DHK (from 5.83 to 4.16,
3.19, and 2.15; P < 0.05; Figure 3). Hence, DHK inhibited
ROS induced by LPS.

DHK restrained cell apoptosis induced by LPS

Next, the apoptosis of WI-38 cells was detected. The
results of flow cytometry revealed that DHK (5 uM, 10 uM,
and 20 uM) treatment reversed LPS induction that caused
increase in WI-38 cells apoptosis (from 32.98% to 26.46%,
20.56%, and 14.86%; P < 0.01; Figure 4A). In addition,
LPS treatment elevated the protein levels of Bax and
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Figure 2 DHK attenuated inflammation in WI-38 cells induced
by LPS. (A) RT-gPCR evaluated the levels of IL-1B, IL-6, and
TNF-a.. ***P < 0.001 relative to control. *P < 0.05, #P < 0.01,
and #P < 0.001 relative to LPS. (B) ELISA evaluated the
concentrations of IL-1B, IL-6, and TNF-a.. ***P < 0.001 relative
to control. #P < 0.01 and ##P < 0.001 relative to LPS.

cleaved-caspase 3 (P < 0.001), while 5-, 10-, and 20-uM DHK
treatment decreased Bax and cleaved-caspase 3 protein
levels (P < 0.01; Figure 4B). Taken together, DHK restrained
LPS-induced cell apoptosis.

DHK modulated infantile pneumonia via SIRT1/
NF-xB pathway

Finally, the potential mechanism associated between DHK
and infantile pneumonia was evaluated. SIRT1 protein level

Control

ROS

LPS+DHK (10uM)

ROS

Figure 3

LPS+DHK (20uM)

was lowered with the induction of LPS (P < 0.001), and was
reversed by 5-, 10-, and 20-uM DHK treatment (P < 0.001;
Figure 5A). The treatment of 5-, 10-, and 20-uM DHK coun-
teracted LPS induction-mediated elevation of p-p65 and
p-IkBo protein levels (P < 0.01; Figure 5B). To conclude,
DHK modulated infantile pneumonia via SIRT1/NF-«xB
pathway.

Discussion

Pneumonia is a globally prevalent infection causing mor-
tality in children."'> Some other rehabilitation strategies,
such as exercise regime, can diminish pneumonia;' such a
scheme has anti-inflammatory effects and could be a good
strategy to treat pneumonia.”'® Severe infantile pneumonia
can lead to heart failure, encephalitis, and other complica-
tions, eventually causing death."?' Currently, it is important
to find more reliable biomarkers linked to infantile pneu-
monia. DHK was identified as having an important function
in severe acute pancreatitis," hepatic fibrosis,”? and liver
injury,” but the potential effect of DHK on infantile pneu-
monia was unknown. The present research examined the
regulatory functions of DHK on cell viability, information,
ROS, and cell apoptosis in LPS-triggered WI-38 cells. It fur-
ther evaluated the role of DHK in infantile pneumonia. The
data showed that 40-uM DHK treatment markedly reduced
the viability of WI-38 cells, and DHK modulated the viabil-
ity of WI-38 cells in infantile pneumonia. Furthermore, it
was identified that DHK treatment inversely changed LPS-
induced elevation in the levels of inflammation biomark-
ers, which suggested that DHK attenuated inflammation in
WI-38 cells induced by LPS. DHK counteracted LPS-induced
production of ROS in WI-38 cells. DHK also decreased LPS-
induced elevation of WI-38 cells apoptosis and mediated
the levels of apoptosis-associated indexes, indicating DHK
restrained cell apoptosis induced by LPS. On the whole,
DHK relieved LPS-induced WI-38 cells inflammation injury
in infantile pneumonia.
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DHK inhibited ROS induced by LPS. DCF-DA fluorescence was applied for the assessment of oxidative stress.
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Figure 4 DHK restrained cell apoptosis induced by LPS. (A) Apoptosis of WI-38 cells was detected by flow cytometry. ***P < 0.001
relative to control. #P < 0.01 and ##P < 0.001 relative to LPS. (B) Protein levels of Bax and cleaved-caspase 3 were evaluated via
Western blot analysis. ***P < 0.001 relative to control. #P < 0.01 and ##P < 0.001 relative to LPS.
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Figure 5 DHK modulated infantile pneumonia via SIRT1/NF-kB pathway. (A) Protein levels of SIRT1 were analyzed by Western
blot analysis. ***P < 0.001 relative to control. ##P < 0.001 relative to LPS. (B) Western blot analysis presented the protein levels of
p-p65, p65, p-lkBa, and IkBa. ***P < 0.001 relative to control. #P < 0.01 and ##P < 0.001 relative to LPS.
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SIRT1 is a widely expressed and extensively explored
member of sirtuin family. SIRT1 is an NAD*-dependent
deacetylase that acts as an intracellular regulator of tran-
scriptional activity and various protein functions.?? The
protective effect of SIRT1 has been demonstrated in a vari-
ety of pathological conditions, including atherosclerosis,??
neurodegenerative diseases,” and cerebral ischemia.?
Past studies showed that SIRT1 exacerbated pressure over-
load-induced hypertrophic heart failure by modulating the
metabolism of energy.?¢ Treatment of pinocembrin (fla-
vanone) regulates early brain injury after subarachnoid
hemorrhage by modulation of SIRT1.? Interestingly, SIRT1
is found to mediate several important key targets via
deacetylation, including p53 and NF-KB.2 SIRT1 represses
inflammatory response through deacetylation of p65 sub-
unit and inhibiting NF-kB activity.?’ SIRT1 participates in
herpes simplex 1 (HSV-1)-mediated microglial inflammation
via NF-xB signaling.*® Notably, SIRT1 is reported for being
correlated with infections. For instance, SIRT1 inhibition
impairs glycolysis in infectious challenge to potentiate
endothelial dysfunction.’' SIRT1 has a role on regulatory
mechanisms of bacterial, viral, and parasitic infections.3?
However, whether SIRT1 is implicated in infantile pneumo-
nia needs consideration. Herein, SIRT1 protein level was
lowered with the induction of LPS, but was reversed by
DHK treatment. What’s more, DHK counteracted LPS induc-
tion-mediated elevation of p-p65 and p-l1kBa protein levels.
In summary, DHK modulated infantile pneumonia via SIRT1/
NF-xB pathway.

Conclusion

This study initially validated that DHK lessened inflam-
mation injury in LPS-induced WI-38 cells by modulating
SIRT1/NF-xB pathway. The results could shed light on the
implication of DHK for preventing and treating infantile
pneumonia.
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