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Abstract
Background: In this study, we investigated the relationship between long-chain non-coding 
RNAs (lncRNAs) and respiratory syncytial virus (RSV)-exacerbated asthma.
Methods: Transcriptome microarray was used to detect differentially expressed lncRNAs in 
dendritic cells (DCs) co-cultured with RSV-infected human airway epithelial cells and DCs 
infected with RSV. The identified downregulation of lncRNA n337374 was validated using fluo-
rescence RT-qPCR. LncRNA n337374-overexpressing DCs and RSV-exacerbated asthmatic mouse 
models were established. Airway hyper-reactivity and bronchoalveolar lavage fluid (BALF) 
were examined, and pathological changes in lung tissues were observed in mice. Surface mol-
ecules in DCs were detected by flow cytometry and RT-qPCR and the expression of CD86 and 
mitogen-activated protein kinases was determined by western blot.
Results: In an RSV-exacerbated asthmatic mouse model, the airway wall was thickened, lumi-
nal stenosis was observed, a large number of inflammatory cells were infiltrated in the lung tis-
sue, lung function was impaired, and counts of inflammatory cells in the BALF were increased. 
The overexpression of lncRNA n337374 ameliorated these pathological changes and improved 
impaired lung function and inflammation in an asthmatic mouse model. In DCs co-cultured 
with RSV-infected human airway epithelial cells, CD86 expression was promoted and ERK was 
markedly phosphorylated. When lncRNA n337374-overexpressing DCs were used in the co-cul-
tures, the expression of CD86 and phosphorylated ERK was decreased.
Conclusion: The results suggest that lncRNA n337374 overexpression may suppress DC matu-
ration by downregulating the CD86 and ERK pathway, subsequently relieving the symptoms 
of RSV-induced asthma. LncRNA n337374 may be a promising target in the treatment of RSV 
infection-induced asthma.
© 2021 Codon Publications. Published by Codon Publications.
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monolayers of Hep-2 cells in RPMI-1640 medium. RSV was 
harvested as demonstrated in our previous study,14 and a 
multiplicity of infection of 1 (MOI = 1) was used in subse-
quent analyses.

Cell grouping and co-culture of BEAS-2B bronchial 
epithelial cells and iMDDCs

Three experimental groups were used, including the human 
dendritic cell (HDC)-BEAS+RSV group, HDC-RSV group, and 
HDC-CONTROL group. In the HDC-BEAS+RSV group, a sus-
pension of human BEAS-2B bronchial epithelial cells was 
inoculated into the top chamber of a Transwell co-culture 
system (37°C, 5% CO2). RSV solution was added to the top 
chamber and cultured for 2 h. Consequently, iMDDCs were 
added to the bottom chamber of the Transwell system at a 
1:1 ratio of iMDDCs to BEAS-2B for a 48-h co-culture. In the 
HDC-RSV group, RSV viral solution was inoculated into the 
top chamber and the same volume of iMDDC suspension 
was added to the bottom chamber. In the HDC-CONTROL 
group, the same procedure was used but the RSV viral solu-
tion was replaced with vehicle.

HTA 2.0 transcriptome microarray assay and 
bioinformatic analyses

The cells in the bottom chamber were collected to extract 
total RNA. The prepared GeneChips were scanned using 
Affymetrix® GeneChip Command Console (AGCC). The data 
were normalized using the Robust Multichip Analysis (RMA) 
algorithm.

Differentially expressed genes (DEGs) and lncRNAs 
between different groups were filtered using the random 
variance model (RVM) t-test.16 Gene ontology (GO)17 func-
tion and pathway enrichment analyses were performed for 
the DEGs. Pathway analysis was carried out using Kyoto 
Encyclopedia of Genes and Genomes (KEGG),18 Biocarta, 
and Reactome.19

Fluorescence RT-qPCR

The expression of DELs was detected using fluorescence 
RT-qPCR. Briefly, 2 mg of purified RNA was used to estab-
lish a 20-µl reverse transcription system. The result-
ing cDNA was amplified by PCR (1 µL cDNA, 1 µL each of 
upstream and downstream primers, 10 µL 2 × MIX, and 7 µL 
sterile water) involving initial denaturation (95°C for 10 
min) and 40 cycles of amplification (95°C denaturation for 
30 s, 57°C annealing for 30 s, and 75°C extension for 45 s).

Infection of iMDDCs with n337374-overexpressing 
lentiviruses

Lentivirus overexpressing lncRNA n337374 (MOI = 25) was 
transfected with 293T cell (GENECHEM Co.) in DMEM contain-
ing 10% fetal bovine serum (FBS). Green fluorescent protein 
(GFP) expression was observed under a fluorescence micro-
scope to evaluate transfection efficiency after 48 h. The 
supernatant containing lentivirus particles was collected 

Introduction

Asthma is a heterogeneous disease defined by a history 
of respiratory symptoms, such as wheezing, shortness of 
breath, and chest tightness.1 Viral respiratory infections 
are important and common triggers of asthma exacerba-
tions in children.2,3 Respiratory syncytial virus (RSV), an 
enveloped, non-segmented negative-strand RNA virus, is 
the most common cause of severe acute lower respiratory 
illness in children, which, in some cases, leads to infant 
hospitalization and even death.4,5 Increasing studies have 
provided convincing evidence that RSV-induced asthma 
exacerbation in early childhood is an important causative 
factor for subsequent onset of asthma later in life.6 Though 
the pathology of RSV-exacerbated model was reported 
to be involved in complement activation,7 the underlying 
mechanism remains incompletely characterized.

Long-chain, non-coding RNAs (lncRNAs) extensively 
exert regulatory effects on apoptosis, proliferation, and 
differentiation by modulating gene expression at differ-
ent levels rather than encoding proteins.8 The function 
of lncRNAs in asthma has received much attention, and 
some lncRNAs, such as lncRNA MEG3 and GAS5, have been 
found to play a role in the development of asthma.9,10 
Nonetheless, little is known about the involvement of 
lncRNAs in RSV-induced asthma exacerbation model and 
the underlying mechanisms.

Dendritic cells (DCs) are crucial for the induction of 
adaptive immunity, tolerance, or allergic responses in the 
lung.11 DCs have been recognized as the most powerful 
antigen-presenting cells, functioning in the initiation of 
asthma.12 It has long been demonstrated that RSV infection 
leads to DC maturation.13 In our previous study, we found 
that primary rat airway epithelial cells exposed to RSV-
induced functional maturation of rat myeloid dendritic cells 
(mDCs).14 Based on these findings, we used human immature 
monocyte-derived dendritic cells (iMDDCs) in co-culture 
with RSV-infected human airway epithelial cells and an RSV-
induced asthma exacerbation mouse model to investigate 
promising, differentially expressed lncRNAs (DELs) that may 
be implicated in RSV-exacerbated asthma and elucidate 
the underlying molecular mechanisms. Moreover, human 
whole-genome microarray technology, cluster analyses, 
function and pathway enrichment analysis, fluorescence 
real-time quantitative PCR (RT-qPCR), flow cytometry, and 
western blot analysis were applied in this study.

Materials and methods

Cell preparation and culture

Human BEAS-2B bronchial epithelial cells were obtained 
from Kunming Institute of Zoology, Chinese Academy of 
Sciences, Kunming, China, and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM). Human iMDDCs were 
generated from peripheral blood monocytes and cultured 
as described previously.15

RSV culture and titer determination

RSV Strain Long, an A subtype RSV (Guangzhou Biotest 
Bioengineering, Guangzhou, China) was cultured on 
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to calculate the percentage of inflammatory cells including 
leukocytes, neutrophils, lymphocytes, monocytes, eosino-
phils, and basophils.

Detection of surface molecules and western blot 
analysis

Surface molecules consisting of HLA-DR, CD40, CD80, 
CD83, and CD86 of DCs were detected using fluorescence 
RT-qPCR and flow cytometry. Protein levels of p-ERK1/2, 
p-JNK, and p-p38 in DCs were analyzed using western blot 
analysis.14

Statistical analyses

Statistical analyses were performed using SPSS software 
version 22.0 (IBM Software and Systems, NY, USA). All data 
were expressed as the mean ± standard deviation. Mean 
values between two groups were compared using t-test. 
Mean values of more than two groups were compared using 
one-way analysis of variance (ANOVA). P < 0.05 indicated a 
significant difference.

Results

LncRNA n337374 was significantly downregulated 
in DCs upon RSV stimulation

To unravel the possible lncRNAs related to RSV-exacerbated 
asthma, DEGs and DELs were screened among the HDC-
CONTROL group, HDC-RSV group, and HDC-BEAS+RSV 
group. As a result, 25 DEGs and 29 DELs with P < 0.05 
were identified between the HDC-BEAS +RSV and HDC-RSV 
group. Most of them were upregulated genes and lncRNAs, 
and only five genes and two lncRNAs were downregulated. 
The results of cluster analysis showed that the expression 
levels of these genes and lncRNAs were markedly different 
among the three groups (Figure 1A).

According to GO function enrichment analysis, the 
upregulated genes were significantly enriched in a number 
of pro-inflammatory immune reaction-related biological 
processes (Figure 1B), whereas the downregulated genes 
were significantly related to thyroid hormone catabolic 
process and protein O-linked glycosylation-related biologi-
cal processes (Figure 1C). Moreover, the upregulated genes 
were consistently involved in the chemokine signaling path-
way, cytokine–cytokine receptor interaction, and NF-κB 
signaling pathway (Figure 1D).

Of the identified DELs, the top 6 DELs with the 
largest fold changes were selected to be validated 
using fluorescence RT-qPCR. As shown in Figure 1E, the 
expression of the gene corresponding to lncRNA n337374 
was significantly downregulated in the HDC-BEAS+RSV 
group compared with the HDC-CONTROL group and 
the HDC-RSV group (P < 0.01), in concordance with the 
results of the microarray assay. This suggested that 
lncRNA n337374 might play an important role in RSV-
exacerbated asthma and was therefore selected for the 
subsequent analyses.

and titrated. Consequently, the viral solution at MOI = 20 
was used to transfect iMDDCs. After 72 h, the n337374 mRNA 
expression from the gene corresponding to lncRNA n337374 
was detected using fluorescence RT-qPCR. As a control, 
the iMDDCs were transfected with empty vector GV367 
(MOI  =  20) or exposed to culture medium using the same 
procedure. After transfection, the iMDDCs were co-cultured 
with human BEAS-2B bronchial epithelial cells infected with 
RSV using the Transwell system for 48 h as mentioned above.

Establishment of an lncRNA n337374-
overexpressing RSV-exacerbated asthmatic mouse 
model

For the study, 7-week-old, female specific pathogen-free 
BALB/c mice were purchased from Shanghai SLAC 
Laboratory Animal Co. Ltd. Twelve mice were randomly 
divided into the normal group, ovalbumin (OVA)+RSV 
group, and OVA+RSV+ LV-n337374-EGFP group. The exper-
imental protocol was approved by the Ethical Committee 
of Shanghai Jiaotong University School of Medicine for 
Laboratory Animals.

In the normal group, each mouse was intraperitoneally 
injected with 0.2 mL sterile saline solution on days 0, 7, 
and 14. In the form of nasal drops, each mouse was admin-
istered 30 μL of sterile saline solution on days 21, 23, and 
25 and 25 μL of sterile saline solution was administered on 
days 28 and 29.

In the OVA+RSV group, each mouse was intraperitone-
ally injected with 0.2 mL of freshly prepared OVA aluminum 
hydroxide solution containing 20 μg OVA and 2.25 mg alumi-
num hydroxide on days 0, 7, and 14. On days 21, 23, and 25, 
each mouse was administered 30 μL of sterile saline solu-
tion in the form of nasal drops. On days 28 and 29, each 
mouse was inoculated 25 μL of 107 pfu RSV in the form of 
nasal drops. In the OVA+RSV+LV-n337374-EGFP group, each 
mouse received the same treatment as the mice in the 
OVA+RSV group. Moreover, on days 21, 23, and 25, each 
mouse received 30 μL of 108 pfu LV-n337374-EGFP in the 
form of nasal drops. On day 34, the right posterior lung 
lobe tissues of each mouse were collected and prepared. 
Pathological changes in lung tissue sections (5-μm thick) 
were observed under a light microscope.

Detection of mouse airway hyper-reactivity

Pulmonary functions of the mice were detected using an 
animal pulmonary function-non-invasive airway mechanism 
detection system. Methacholine (Mch) at the same volume 
of saline (10 μL) was nebulized at increasing concentrations 
in the order of 0, 3.125, 6.25, 12.5, 25, and 50 mg/mL. Mean 
special airway resistance (sRAW) values were recorded 
under different Mch concentrations and used as indicators 
to assess the airway reactivity of the mice.

Classification of bronchoalveolar lavage fluid 
(BALF) cells

BALF of mice in each group was collected as previously 
described.20 A total of 300 blood cells in BALF were counted 
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Figure 1  Identification, functional analysis, and validation of differentially expressed genes and lncRNAs. Cluster analysis of 
differentially expressed genes and lncRNAs (A). Red and green colors indicate upregulated and downregulated genes and lncRNAs, 
respectively. Biological processes that the upregulated genes are involved in (B). Biological processes that the downregulated 
genes are involved in (C). Signaling pathways significantly related to the upregulated genes (D). Detection of six differentially 
expressed lncRNAs in DCs by fluorescence real-time quantitative PCR (E).

Successful overexpression of lncRNA n337374 in 
DCs by infection with lentiviruses

We infected 293T cells with lncRNA n337374-overexpress-
ing lentiviruses. After 48 h of infection, GFP expression 
was observed in almost all 293T cells under a fluores-
cence microscope (Figure 2A), indicating high transfection 
efficiency of the n337374-overexpressing lentiviruses in 
293T cells. Therefore, n337374 lentiviruses were used to 

infect the target cells (iMDDCs) to achieve lncRNA n337374 
overexpression. It was observed that n337374 expression 
was dramatically higher in DCs transfected with lncRNA 
n337374-overexpressing lentivirus (n337374-DC group) 
compared with DCs transfected with empty GV367 vec-
tor (GV367-DC group) and exposed to medium (CONTROL 
group, Figure 2B). These results indicate that lncRNA 
n337374 was successfully overexpressed in DCs by infection 
with lncRNA n337374-overexpressing lentiviruses.
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lncRNA n337374 overexpression relieved the 
symptoms of asthma in the RSV-exacerbated 
asthmatic mouse model

To study the effect of lncRNA n337374 overexpression on 
RSV-exacerbated asthma in vivo, the lncRNA n337374-over-
expressing RSV-exacerbated asthmatic mouse model 
was established by intra-nasal administration of lncRNA 
n337374-overexpressing lentiviruses. Compared with the 
lung tissues of mice in the normal group (Figure 3A), the 
lung tissues in the OVA+RSV group showed noticeable air-
way wall thickening, luminal stenosis, and infiltration of a 
large amount of inflammatory cells (Figure 3B). This proved 
that the RSV-exacerbated asthma model was developed 
successfully in mice. Moreover, the OVA+RSV+LV-n337374-
EGFP group had reduced airway wall thickening and lumi-
nal stenosis and decreased inflammatory cell infiltration 
in lung tissues (Figure 3C). Based on these morphological 
results, we concluded that lncRNA n337374 overexpression 
alleviated RSV-exacerbated asthmatic syndromes.

The sRAW values of mice in the OVA+RSV group and 
the OVA+ RSV+LV-n337374-EGFP group gradually increased 
with the increase in Mch concentration. At 0, 6.25, and 
12.50 mg/mL Mch concentrations, sRAW values of the mice 
were significantly decreased in the OVA+RSV+LV-n337374-
EGFP group compared with the OVA+RSV group (P < 0.01, 
Figure 3D). Cell classification and cell counting in the BALF 
showed significant increments in the total number of leu-
kocytes, neutrophils, lymphocytes, monocytes and eosin-
ophils in the OVA+RSV group relative to the normal group 
(P < 0.05). The OVA+RSV+LV-n337374-EGFP group had obvi-
ously decreased amounts of leukocytes, neutrophils, lym-
phocytes, monocytes, and eosinophils than the OVA+RSV 
group (P < 0.05, Figure 3E). These observations implied 
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Figure 4D–E). However, the expression levels of p-JNK and 
p-38 were significantly increased in n337374-HDC-BEAS+RSV 
group compared with that of GV-367-HDC-BEAS+RSV group 
(P < 0.05, Figure 4D–E). These results revealed that RSV 
infection resulted in upregulation of CD86 and enhanced 
ERK phosphorylation in DCs, which was partly suppressed 
by lncRNA n337374 overexpression.

Discussion

Asthma has become a severe global health problem 
affecting all age groups, especially children.22 RSV infec-
tion is a leading causative factor for acute asthma in chil-
dren.23 To date, the association between lncRNAs and 
RSV-exacerbated asthma has not been studied in detail. 
For the first time, to our knowledge, this study high-
lighted the potential lncRNAs participating in RSV-induced 
asthma using both in vivo and in vitro analyses. Using 
human transcriptome array analysis, we determined that 
a total of 25 DEGs and 29 DELs were possibly related to 
RSV-stimulated exacerbation asthma in vitro. Furthermore, 
GO function and pathway enrichment analysis uncovered 
that these dysregulated genes were significantly correlated 
with several pro-inflammatory immune reaction-related 
biological processes, the chemokine signaling pathway, 
the cytokine–cytokine receptor interaction pathway, and 
the NF-κB signaling pathway. Chemokines participate in 
the development and progression of asthma via the reg-
ulation of inflammatory cells, angiogenesis, and airway 
hyper-reactivity.24 NF-κB acts as a switch for the inflam-
matory stimulus signals during the differentiation and mat-
uration process of DCs.25 NF-κB induces the expression of 

that lncRNA n337374 overexpression improved the impair-
ment of pulmonary function and inflammation caused by 
RSV- exacerbated asthma.

Overexpression of lncRNA n337374 compromised 
the upregulation of surface molecule CD86 
and p-ERK1/2 protein in DCs exposed to RSV 
stimulation

By using fluorescence RT-qPCR, it was observed that CD86 
mRNA expression was obviously elevated in the HDC-
BEAS+RSV group compared with the HDC-RSV group (P < 
0.01). However, the elevation of CD86 was significantly 
decreased in the n337374-HDC-BEAS+RSV group but not 
in GV367-HDC-BEAS+RSV group (Figure 4A). Similarly, flow 
cytometry results showed that the HDC-BEAS+RSV group 
had a remarkable increase in CD86 expression levels in 
comparison with the HDC-RSV group (P < 0.01), whereas the 
n337374-HDC-BEAS+RSV group had significantly decreased 
CD86 expression levels compared with the GV367-HDC-
BEAS+RSV group (P < 0.01, Figure 4B–C).

As mitogen-activated protein kinases (MAPKs) are 
involved in all aspects of asthma, they have emerged 
as promising targets for the development of therapies 
against asthma.21 Phosphorylated extracellular signal-reg-
ulated kinase (p-ERK), Jun kinase (p-JNK), and p38 were 
assessed using western blot analysis. Compared with the 
HDC-RSV group, the HDC-BEAS+RSV group showed a signifi-
cantly higher expressions of p-ERK1/2 and p-JNK (P < 0.01, 
Figure 4D–E). Moreover, there was a significant decrease in 
p-ERK1/2 in the n337374-HDC-BEAS+RSV group compared 
with that of the GV367-HDC-BEAS+RSV group (P < 0.01, 

Figure 4  Effect of lncRNA n337374 overexpression on the surface molecules and MAPK pathways in DCs. Detection of surface 
molecules in DCs of different groups using fluorescence real-time quantitative PCR (A). Evaluation of surface molecules in DCs of 
different groups using flow cytometry (B–C). Western blot analysis of p-ERK, p-JNK, and p-p38 proteins in different groups (D–E).  
**p < 0.01 vs. the GV367-HDC-BEAS+RSV group; #, ##p < 0.05, p < 0.01 vs. the HDC-RSV group.
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JNK was enhanced more. This indicates that the inhibitory 
effect of lncRNA n337374 overexpression on DC matura-
tion may be partly mediated by the ERK pathway, thereby 
ameliorating RSV-induced asthmatic syndromes. Although 
phosphorylation of p38 and JNK was enhanced by lncRNA 
n337374, the asthmatic symptoms were relieved in RSV-
exacerbated asthma mice. Therefore, we hypothesized 
that the decreased pERK1/2 by lncRNA n337374 might func-
tion more than the increased phosphorylation of p-JNK and 
p-p38 in RSV-exacerbated asthma. However, this hypothe-
sis warrants further validation.

In summary, this is the first study on lncRNAs associ-
ated with RSV-induced asthma. We discovered a novel 
lncRNA, lncRNA n337374, which is involved in this pro-
cess. By in vivo and in vitro studies, we found that lncRNA 
n337374 overexpression might attenuate RSV-induced asth-
matic symptoms by suppressing DC maturation via decreas-
ing CD86 expression and prohibiting the ERK pathway. Our 
study suggests that lncRNA n337374 might be a novel candi-
date target for therapy against asthma.
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