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Abstract
Chronic inflammation in the airway passage leads to the clinical syndrome of pediat-
ric asthma. Allergic reactions caused by bacterial, viral, and fungal infection lead to the 
immune dis-balance which primes T helper cells (Th2), a specific cluster of differentiation 
4 (CD4) T cell differentiation. This favors the Th2-specific response by activating the inter-
leukin 4/interleukin 13 (IL-4/IL-13) cytokine signaling and further activates the secretion of 
immunoglobulin E (IgE). IL-13 develops bronchial asthma by elevating bronchial hyperre-
sponsiveness and enables production of immunoglobulin M (IgM) and IgE. The present study 
aims to target IL-13 signaling using molecular docking and understanding molecular dynamic 
simulation (MDS) to propose a compelling candidate to treat asthma. We developed a library 
of available allergic drugs (n=20) and checked the binding affinity against IL-13 protein  
(3BPN.pdb) through molecular docking and confirmed the best pose binding energy of –3.84 
and –3.71 for epinephrine and guaifenesin, respectively. Studying the interaction of hydrogen 
bonds and Van der Walls, it is estimated that electrostatic energy is sufficient to interact 
with the active site of the IL-13 and has shown to inhibit inflammatory signaling. These com-
putational results confirm epinephrine and guaifenesin as potential ligands showing potential 
inhibitory activity for IL-13 signaling. This study also suggests the designing of a new ligand 
and screening of a large cohort of drugs, in the future, to predict the exact mechanism to 
control the critical feature of asthma.
© 2022 Codon Publications. Published by Codon Publications.
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Introduction

Allergy is an a complex immunological reaction that begin 
when a harmless foreign substance such as dust, mold, 
or pollen cause strong immunological reactions through 
immunoglobulin E (IgE)-mediated or non-IgE mediated  
(T lymphocyte) to attack an allergen by the immune sys-
tem.1 Allergic rhinitis is a type of seasonal hay fever that 
occurs when the immune system overreacts to an aller-
gen in the air. Currently, the diseases affected between 
10% and 30% of the population.2 Globally, asthma ranked 
46th, and 28th leading cause of burden is approximately 
2%–5% of children who are affected,3 and they are het-
erogeneous, indicating many pathological, clinical, and 
physiological phenotypes.4 Acute rhinosinusitis (ARS) is 
an infection of both your nasal cavity and sinuses that 
occurs due to viral, bacterial, or fungal infections, or 
allergic reactions, or environmental factors.5 Allergic 
diseases are caused by the expansion of a subset of T 
cells such as “T-helper 2 cells” (TH 2-cell), which switch 
to generate the IgE antibodies to specific allergens6 by 
releasing interleukin-4 (IL-4) and IL-13 to promote IgE 
production7. This in turn causes allergic asthma triggered 
by other cytokines such as IL-4, IL-5, IL-25, and IL-33. 
Then mast cells release histamine response to aller-
gens leading to allergic symptoms and causing asthma.8,9 
All these cytokines play a key role in initiating airway 
inflammation. Importantly, IL-13 is a 17-kDa glycoprotein 
that plays as the role of a central mediator in asthma 
by eliciting independent pathological and physiologic 
characteristics which are activated by mast cells, baso-
phils, natural killer cells, eosinophils, CD4+ TH2 cells, 
and CD8+ T cells.10

Bronchial asthma is a disorder of the airways due 
to the accumulation of inflammatory cells, and the pri-
mary treatment is inhaled corticosteroids (ICSs), which 
act as an anti-allergic agent on inflammatory cells.11,12 
Severe asthma is lower in childhood as compared to 
adult asthma.13 A cohort study of 323 12-year-old chil-
dren in Sweden, had shown severe asthma defined by 
the World Health Organization (WHO),14 and suggested 
that in a population about 0.23% of prevalence had 2.1% 
in children.15 Asthma phenotypes are related to airway 
inflammation pathways, defined by distinct inflammatory 
endotypes, cell mediators, and immune pathways.16 One 
of the primary aims to reverse asthma is the reversal of 
existing airway inflammation. Hence, strategies for thera-
peutics focus on reducing inflammation17, in the field of 
biological treatment blockade of IgE is the milestone18, 
and Omalizumab is the available humanized monoclonal 
anti-IgE with the pediatric indication (age >6 years).19 
Generally, there is no cure for allergies but, many medi-
cations are available including antihistamines such as 
Cetirizine, Chlorpheniramine, Ketotifen, etc, and decon-
gestants such as pseudoephedrine, phenylephrine with 
oxymetazoline, corticosteroids, and combination drugs.20 
The biopharmaceutical targeted the IL-13 (lebrikizumab) 
and shows IL-13 blocking through the IL-13 receptor (R)  
α1/IL-4Rα.21 The pathophysiology of asthma through 
treatment options in use includes corticosteroids, 

β2-adrenoceptor agonists, mediator antagonists, synthesis 
inhibitors, and phosphodiesterase inhibitors.22

In protein dynamics, integrally associated mechan-
ics, forces, and motions with its structure will determine 
the function and its ability to adapt to various driven sets 
of conditions. Studying ligand-driven molecular protein 
dynamics, also known as the induced fit (IF) hypothesis, 
helps to understand biology at the molecular level.23–25 In 
this regard, studying protein dynamics influences ligand on 
protein dynamics, and it is a core issue in biology. With 
this background, it is necessary to address the potential 
candidate to control and manage the inflammation asso-
ciated with asthma at this scenario. To address this, the 
study aimed to screen the drug candidates by applying high 
throughput virtual screening and molecular dynamics for 
allergies that cause asthma. To understand the mecha-
nism of these with target inflammatory determinants rule 
out the possible way to treat asthma in the future. Ligand 
docking and ligand–protein molecular dynamics highlight 
the marker IL-13 cytokine which plays an important role 
in the inflammatory pathway and this helps in analyzing 
asthma.

Materials and methods

Selection of drug candidates

To understand the suitable candidate for target inhibition 
and disease prevention, in silico molecular assessment, we 
targeted the drugs which manage allergic asthma. There 
are several categories of allergic medicines available on 
Drugs.com and we selected 20 drugs (Table 1) based on 
the literature survery pertaining to drugs having target 
action on IL-13 and few side effects compared to others. 
Further, screen the best suitable candidate to understand 
the designing strategy for treating asthma. 

Molecular docking study to investigate potential 
lead for inhibiting IL-13 cytokine signaling 

Target selection 
The putative three-dimensional (3D) target structure 
PDB ID: 3BPN for IL-13 receptor, involved in the inflamma-
tory signaling pathway, was selected based on literature 
reports suggesting this is the key to the development of 
T cell-mediated immune responses which cause allergy 
and asthma.26 Also, lebrikizumab, a monoclonal antibody 
(5L6Y.pdb) was used as a control to compare the drug 
candidates. This protein crystal structure was retrieved 
from Research Collaborative for Structural Bioinformatics 
(RCSB) protein databank and helps to screen the targeted 
drugs to understand those drug–target interactions. 

Ligand preparation 

The selected drug analog (Table 1) structures were further 
drawn from ChemSketch and saved the molecules in mol2 
format to use for further study. 

Drugs.com
5L6Y.pdb
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Ligplot analysis using PDBsum 

The LIGPLOT27,28 program was used to predict the binding 
sites of drugs (Table 1) for protein 3BPN, and the program 
generates the 2D representation of protein–ligand com-
plexes from the PDB file as input. Then, it displays all the 
possible interactions (hydrogen bond and non-bonded con-
tacts) held between ligand and residue of protein structure 
to understand the drug potentiality in target inhibition.

Lead optimization 

All drug analogs were generated to the guide molecule 
structure to that of the binding pocket of the 3BPN protein 
molecule, which was used to identify the active sites,27 
that is, the pocket where the ligand is likely to bind. To 
compute this, the mol2 3BPN file was read using the main 
menu to display the number of cavities. 

Molecular docking study 

The docking of the ligands for 3BPN was performed using 
an online molecular docking server.27,29 Also, lebrikizumab, 
a monoclonal antibody (5L6Y.pdb) with 3BPN, is used as a  
control to compare the drug candidates. This predicts the 
ligand interactions with the target by separating com-
pounds with micro and nanomolar binding constants from 
those with millimolar binding constants and may typically 
rank molecules with finer variations in affinity. The first 
step is to retrieve ligands and target 3BPN.pdb files from 
the database. The second step is to prepare PDBQT format 
files for target, ligand, and grid parameter files to finally 
dock the complex interactions.

Molecular dynamics simulations

The ligand–protein complex was used to study the molec-
ular dynamics using LARMD30 aiming to solve the problem 
of ligand-driven protein dynamics. This bioinformatics 
tool may help to guide and direct dynamic processes and 
give a reasonable hypothesis. Also, this toolkit simplifies 
the challenges to correlate ligand recognition with protein 
structure. 

Results 

Identification of potential inhibitory compound by 
molecular docking study

Currently, several drugs are used to treat inflammation and 
asthma in which IL-13 is the main cause of asthma (Figure 1).  
The drugs which are listed in Table 1 are initially tested 
to know their interactions with protein 3BPN and their 

Table 1  The available drug candidate binding energy to 
protein IL-13 receptor used to treat allergy which they are 
used during asthma conditions.

Sl.No. Drug 
candidates

Generic name Est. Free 
Energy of 
Binding in 
kcal/mol

1 Albuterol Albuterol inhalation     +1.13

2 Beclomethasone Beclomethasone 
inhalation

    +1.27

3 Benadryl Diphenhydramine      +4.55

4 Budesonide Budesonide      +1.24

5 Ciclesonide Ciclesonide 
inhalation

     +1.56

6 Cyproheptadine Cyproheptadine    +51.58

7 Dexamethasone Dexamethasone  +285.89

8 Epinephrine Epinephrine 
injection

     -3.84

9 Flunisolide Flunisolide 
inhalation

+608.71

10 Ipratropium Ipratropium 
inhalation

  +32.96

11 Levalbuterol Levalbuterol   +15.50

12 Loratadine Loratadine   +60.32

13 Methylprednisolone Methylprednisolone  +280.09

14 Guaifenesin Mucinex      -3.71

15 Prednisone Prednisone +382.14

16 Promethazine Promethazine   +20.86

17 Racepinephrine Racepinephrine      -3.08

18 Salmeterol Salmeterol  +651.73

19 Singulair Montelukast      +1.65

20 Terbutaline Terbutaline      -2.81

21 Theophylline Theophyline      -2.43

Figure 1  Designing of ligand–protein interaction study 
for asthma control. The current investigation is designed 
to explore the suitable drug candidate for the treatment of 
asthma. The figure shows the investigation studies by suitable 
drug screening.

5L6Y.pdb
3BPN.pdb
Sl.No
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binding property was reported in the present study. The 
3BPN is a type of IL-4 and IL-13 cytokines, which are impor-
tant keys for the development of T cell-mediated humoral 
immune responses, associated with allergy and asthma. 
They exert actions through three different combinations 
(type I to type III) of shared receptors. Among screened 
candidates, the estimated epinephrine and guaifenesin 
have high binding energy towards protein 3BPN (–3.84 and 
–3.08 kcal/mol) compared to tralokinumab (PDB-5L6Y) 
(Supplementary Figure S1) having –882.8 kcal/mol docking 
score which is strong enough to block the Th2 associated 
IL-13; and many other drugs that cause asthma are also  
tabulated (Supplementary Table S1). 

The interaction of the ligand with the IL-13 receptor is 
tabulated in Table 2 to overview the strong enough Van der 
walls and electrostatic interaction of epinephrine and guai-
fenesin drugs which reduce the downstream signaling of 
IL-13 and increase the inflammatory activities that induce 
the allergy. 

Both epinephrine and guaifenesin are potential candidates 
to bind efficiently with IL-13 with their side chains and atomic 
interaction shows hydrogen bonds LEU17 (–4.9046) and THR25 
(–0.0501) with epinephrine, and THR25 (3.8366) with guaifen-
esin (Table 2) which is important in blocking the IL-13 signaling 
as expected. Also, the geometry of epinephrine and guai-
fenesin drugs with IL-13 analyzing ligand–protein complex by 
LigPlot+ program and molecular interactions of bond distance 
with the protein and lead molecule was plotted by using PyMOL 
software (Figure 2). This confirms that epinephrine and guai-
fenesin are potentially able to interact with IL-13 to efficiently  
suppress its allergic pathways of signaling to release the  
mediators of inflammation by the mast cells. 

Molecular dynamic simulation 

The molecular dynamic simulation (MDS) is a computer 
program to analyze the physical movements of atoms and 

Table 2  Atomic interactions of epinephrine and guaifenesin with IL-13. 

Drug vdW + Hbond + 
desolv Energy in 
kcal/mol

Electrostatic 
Energy in kcal/

mol

Total Intermolec. 
Energy in kcal/mol

Interact. Surface Other

Epinephrine -4.96 +0.10 -4.86 469.961 Not applicable

Guaifenesin -4.48     +0.15 -4.33 500.514 Not applicable

Decomposed interaction energies in kcal/mo

Drug Hydrogen bonds Polar Cation-pi Hydrophobic Other

Epinephrine LEU17 (-4.9046)
THR25 (-0.0501)

GLN20 (-1.1191)
GLN78 (-0.114)

PHE82 (-0.1084) LEU79 (-0.4984)
LEU113 (-0.0124)

GLU110 (-0.1891)
THR22 (0.2064)

Guaifenesin THR25 (3.8366) LEU79 (-1.8536)
LEU113 (-0.9205) 
LEU109 (-0.6618)  

LEU17 (-0.9158)
THR18 (-0.5055)
GLN78 (-0.4224)
GLU110 (0.149)
THR22 (1.6516)

Figure 2  Interaction of epinephrine and guaifenesin with IL-13. The ligand–protein complex interaction with lead molecule is 
plotted using PyMOL software: (A) ligand–protein interaction of epinephrine; (B) guaifenesin geometry.

(B)(A)
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molecules. In the current investigation, screened candidates 
for the drug interaction suggest that they would have strong 
interaction with the target IL-13. Therefore, the ligand–
protein of epinephrine-IL-13 (e-IL-13) and guaifenesin-IL-13  
(g-IL-13) were processed for the MDS for 5 ns timescale in 
order to analyze the dynamic properties of these inter-
actions through Int_mod to explore the binding mode. 
The results show protein structure, residue correlation, 
deformation energy, and energy decomposition of e-IL-13  
(Figure 3) and g-IL-13 (Figure 4). 

The e-IL-13 interacting pose is depicted in Figure 3A 
which has RMSD of 1.5–2.0 and 0.5–1.0 for IL-13 and epi-
nephrine, respectively, confirms the average distance 
between the atom and superimposed structure at the equi-
librium of the system (Figure 3B). The radius of Gyration 
(Rg) of 30.0 to 30.5 indicates the body axis rotation defined 
as the radial distance assuming the whole mass is concen-
trated. The molecular mechanics energies combined with 
the Poisson–Boltzmann or generalized Born and surface 
area continuum solvation (MM/PBSA and MM/GBSA) con-
sists of electrostatic energy (ELE, –89.55), Van der Waals 
contribution (VDW, –23.21), total gas-phase energy (GAS, 
–112.76), non-polar and polar contribution to solvation  
(PBSOL/GBSOL, 95.69/96.91), entropy (TS, 15.82 unit is 
kcal/mol) and, etc. The binding energy (deltaPB/deltaGB, 
–1.25/–0.03) was calculated as PBTOT/GBTOT, –17.07/–15.82. 

The heatmap of decomposition range from –1.5 to 1.0 
of amino acid of protein residues red to blue, which pose 
with a ligand for binding as given in Figure 3C for the con-
tribution of binding energies as compared to structure 
superimpose (Figure 3A). Also, the molecular trajectories 

of conformational differences in residues in PC1, PC2, and 
PC3, respectively; frame colored blue and black to red in 
order of time clustered in distance PC space (Figure 3D). 

The interaction of g-IL-13 was further understood for 
the complex poses to best fit and shows guaifenesin with 
IL-13 (Figure 4A) and the RMSD of 1.5–2.0 for IL-13 and  
0.5–1.5 for guaifenesin with 1.4 having best poses for 
protein superimpose with it as indicated (Figure 4B) and  
MM/PBSA and MM/GBSA having ELE, –5.72; VDW, –22.02; 
GAS, –27.74; PBSOL/GBSOL, 11.45/10.09; TS, 19.50 unit is 
kcal/mol and deltaPB/deltaGB, 3.21/1.85 was calculated as 
PBTOT/GBTOT of –16.29/17.65. The decomposition of amino 
acid residues shown in the heatmap (Figure 4C) from -1.5 to 
1 red to blue of ligand residues binding poses as compared 
to complex interaction (Figure 4A) of structure superim-
pose. The principal component analysis (PCA) trajectory 
of g-IL-13 as depicted from blue and black to red changes 
upon time scale by crusting (Figure 4D). With these notes, 
the in silico identified potential candidates epineph-
rine and guaifenesin how they behave in vivo is unknown 
and the limitation of the study is that until the drugs are 
characterized experimentally for asthma, it is difficult to  
conclude the suitability of the drugs for the therapy.

Discussion

In the present study, to understand the role of available 
drugs that are used to treat asthma were analyzed to pre-
dict the potentiality of drug efficacy in terms of interaction 
with target IL-13 to alter its molecular pathway involved 

Figure 3  Molecular dynamics of e-IL-13. The residue correlation, deformation energy, and energy decomposition of e-IL-13 are 
depicted. Molecular interaction poses of ligand–protein complex (e-IL-13) (A), the distance of molecular interaction distance of e-IL-13 
RMSD (B), heatmap of decomposition of amino acid of protein residues red to blue which pose with a ligand for binding that is depicted 
by decomposing of the residues (C), and PCA of the complex with time (D).

(B)

(D)

(A)

(C)
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Figure 4  Molecular dynamics of g-IL-13. The residue correlation, deformation energy, and energy decomposition of e-IL-13 are 
depicted. Molecular interaction poses of ligand–protein complex (g-IL-13) (A); the distance of molecular interaction distance of g-IL-13 
RMSD (B); heatmap of decomposition of amino acid of protein residues red to blue which pose with a ligand for binding that is depicted 
by decomposing of the residues (C), and PCA of the complex with time (D).

in inflammatory-induced asthma. In the current investiga-
tion after literature screening,21 the potentially used can-
didates were selected for the drug suitable screening and 
selected the potential targeting binding epinephrine and 
guaifenesin with protein 3BPN compared to tralokinumab. 
This indicates that those two are potentially important for 
the development of next-generation drug candidates for 
asthma. The MDS and heatmap study interactions show 
strong supporting evidence of having a strong correla-
tion to binding and inhibition. IL-13 is sufficient to cause 
mucus hypersecretion. A recent study shows β2AR-agonists 
contribute to asthma through the activation of β2ARs on 
epithelial cells.31,32 In which, a strong association of Th2-
associated IL-13 may cause asthma by inducing a chronic 
inflammatory state33 and aberrant production of two 
cytokines, such as IL-4 and IL-13, that are involved in the 
association of pathogenesis and its allergic pathological 
disorders.34 The treatments refer based on the act on the 
secondary consequences of asthma that is inflammation 
and bronchospasm and the etiological cause of diseases.35 
The release of mediators from mast cells, and also mast 
cell activation elevate the chronic diseases of asthma by 
inhibiting the agents involved in mast cell activation and 
mediator release.36 Dupilumab Anti-IL4 receptor α mAb 
(blocks IL-4 and IL-13) is recently approved by the Food 
Drug Administration (FDA) to treat patients with severe 
asthma at the age of 12 years. The recommended dose is 
600 mg (300 mg dose of two doses for every 2 weeks) as 
initial, followed by 300 mg for every 4 weeks37 (https://
www.regeneron.com/sites/default/files/Dupixent_FPI.pdf) 

to control the following inflammation pathways to reduce 
the consequential asthma issues that could be highlighted. 

The molecular docking prediction of epinephrine 
and guaifenesin shows that these are the most suitable 
drug likely candidates for the target IL-13 as compared 
to tralokinumab. Nowadays, a variety of computational 
tools are available to study the conformational dynamics 
of ligand-driven protein structure to predict the superim-
posed ligand and proteins over time. The system stability 
was elevated by the root mean square deviation (RMSD), 
the radius of gyration (Rg), and a fraction of native con-
tacts (Q). Among them, RMSD is used for the calculation 
of the atomic position to measure the distance between 
superimposed ligand and protein.38 Through the interaction 
of molecules with the IL-13, more cross-interaction with 
other host molecules need to be investigated for these two 
candidates.39 The MDS is a well-known theoretical tech-
nique used mainly to evaluate any predicted ligand–protein 
model and to visualize the interaction of protein interac-
tion by Jsmol40 and structure profile was retrieved from Str 
mod,41 and the corresponding conformational system was 
discussed. In the present study, PCA is estimated to show 
the relationship of structures based on their residues.42 The 
interaction and RMSD of IL-13 show an efficient target to 
interact during the chronic condition, which may have suffi-
cient impact on asthma treatment in future was exploited. 

The current study has limitations in selecting the drug 
candidates for the target. Not all the available in silico 
design can be a true candidate for the success of in vivo 
studies with targeted disease treatment. Currently, IL-13 

(B)

(D)

(A)
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has broad activity in asthma such as synthesis of IgM to 
IgE production from plasma cell,43 synthesis of eotaxin in 
the lung by eosinophils,44 high expression of adhesion mol-
ecules in eosinophils,45 increased mucus production,46 sen-
sitizing airway smooth muscle,47 and hyperresponsiveness.48 
The present investigation shows the potent nature of epi-
nephrine and guaifenesin in molecular docking interactions 
and MDS studies. Additionally, a lot of clinical studies are 
necessary for the approval of a drug to treat any disease. 
In this case, in-silico prediction cannot work in vivo due to 
drug characteristics, interaction with immune system com-
ponents, and many other unknown parameters that are the 
limitations of this study.

Currently, the world is affected by the Severe Acute 
Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) caused 
by Coronavirus disease 2019 (COVID-19). This spread has 
impacted the health especially respiratory virus COVID-19.49  
Asthma treatment is a topic of interest and risk factors 
associated with severe diseases or negative motivation are 
a great matter of debate. A study from the Albert Einstein 
College of Medicine/Montefiore Medical Center 4558 
COVID-19 patients, 951 patients had asthma, 8 of whom 
were on biologics. The study does not find a clinical asso-
ciation between treatment biologicals and odds admit-
ted to the emergency department.50 This study states 
the use of omalizumab confers some protection against 
severe forms of COVID-19 or even helps to manage them, 
but51 some other studies reveal that no evidence was 
concluded for the safe use for the control of COVID-19.52 
The control of the spread of COVID-19 is to improve the 
defence mechanism of the host system through anti-Th2 
inflammation therapies that may be able to provide some 
beneficial effects in treated patients developing COVID-
19.53 The virus-infected cells are killed by CD4+ T cells. 
The virus-activated B lymphocytes can interact with CD4+  
T cells. The first week of virus infection shows an 
increased amount of IgM followed by IgGs antibodies. If 
the adaptive immune system is insufficient, an innate 
immune response can be reinforced through cytokine 
storm which is responsible for multi-organ damage.54 
Current evidence suggest that severe asthma patients 
should maintain their medications during the COVID-19 
pandemic, regardless of therapy. 

Conclusions 

The present study concludes that epinephrine and guai-
fenesin are the two potential candidates confirmed by 
molecular docking which bind the inflammatory biomarker 
IL-13 and molecular simulation dynamics. The epinephrine 
and guaifenesin are promising drugs to treat asthma after 
exploring all the drug characteristics to use this for asthma 
in the coming days and available to all, including economi-
cally poor people. 

The unique aspect of immunotherapy for allergy by 
inducing long-term immunological tolerance through suit-
able drug candidates is required; therefore, future direc-
tions for immunotherapy should be concerned.

Notably, further clinical and basic studies are expected 
to explore the relationship between COVID-19 and asthma 
and/or other allergic diseases.
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Table S1  Drug interactions with 3BPN protein (IL13).	

Drug Est. Inhibition 
Constant, Ki in mM

vdW + Hbond + 
desolv Energy in 

kcal/mol

Electrostatic 
Energy in kcal/

mol

Total Intermolec. 
Energy in kcal/

mol

Interact. 
Surface

Albuterol  -3.32 -0.33  -3.65 473.576

Beclomethasone +1.27e+03 -0.08 +1.27e+03 656.9

Benadryl +3.01 +0.31 +3.33 611.388

Budesonide +1.24e+03 +0.01 +1.24e+03 743.464

Ciclesonide +1.55e+03 -0.00 +1.55e+03 830.475

Cyproheptadine +51.36 +0.22 +51.58 622.639

Dexamethasone +281.09 -0.00 +281.09 641.755

Epinephrine 1.52    -4.96 +0.10 -4.86 469.961

Flunisolide +607.85 -0.12 +607.73 698.918

Guaifenesin 1.90    -4.48 +0.15 -4.33 500.514

Ipratropium +24.23 +0.02 +24.26 636.384

Levalbuterol +12.81 +0.28 +13.10 583.642

Loratadine +59.16 -0.10 +59.06 715.533

Methylprednisolone +277.47 +0.10 +277.57 633.216

Prednisone +380.09 -0.06 +380.03 626.114

Promethazine  +16.34 +0.46 +16.81 603.214

Racepinephrine 5.55    -4.57 +0.07 -4.50 471.863

Salmeterol +637.28 -0.11 +637.17 777.573

Singulair    +1.55e+03 -0.21 +1.55e+03 957.994

Terbutaline 8.76    -4.61 -0.06 -4.67 480.44

Theophylline  16.59    -2.35 -0.08 -2.43 353.16

Supplementary

Figure S1  Tralokinumab (IL13, PDB- 5L6Y)


