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Abstract
Background: Airway remodeling is implicated in the pathogenesis of asthma, and abnor-
mal proliferation of airway smooth muscle cells (ASMCs) contribute to airway remodeling. 
Inflammatory mediator, transforming growth factor-β1 (TGF-β1), stimulates the proliferation 
of ASMCs, and is associated with airway remodeling in asthma. Dexmedetomidine (DEX) has 
been widely used in the adjuvant therapy of acute asthma.
Objective: The potential effects of DEX on extracellular matrix (ECM) production and prolifer-
ation of ASMCs were investigated in this study.
Material and Methods: Human ASMCs were incubated with TGF-β1 for 48 hours, and then 
treated with different concentrations of DEX for another 24 hours. Cell proliferation was 
detected by MTT and BrdU (5’-bromo-2’-deoxyuridine) staining. Flow cytometry was used to 
assess cell apoptosis, and western blot was applied to identify the underlying mechanism.
Results: TGF-β1 induced increase in cell viability and bromodeoxyuridine (BrdU) positive cells 
in ASMCs while repressed cell apoptosis. Second, TGF-β1-induced ASMCs were then treated 
with different concentrations of DEX. Cell viability of TGF-β1-induced ASMCs was decreased by 
incubation of DEX. The number of BrdU positive cells in TGF-β1-induced ASMCs was reduced 
by incubation of DEX. Moreover, incubation of DEX promoted cell apoptosis of TGF-β1-induced 
ASMCs. Third, incubation of DEX attenuated TGF-β1-induced increase in fibronectin, collagen 
I, MMP9, and versican in ASMCs. Lastly, the up-regulation of phosphorylated extracellular 
receptor kinase (p-ERK), phosphorylated Jun N-terminal Kinase (p-JNK), and p-p38 in TGF-β1-
induced ASMCs was reversed by incubation of DEX. 
Conclusion: DEX suppressed TGF-β1-induced ECM production and proliferation of ASMCs 
through inactivation of p38 mitogen-activated protein kinase (MAPK) pathway, providing a 
potential strategy for prevention of asthma.
© 2022 Codon Publications. Published by Codon Publications.
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Introduction

Asthma is one of the most common chronic diseases, and 
its prevalence has increased in the past few years.1 Asthma 
is characterized by airway remodeling, inflammation, and 
hyperresponsiveness.1 Airway remodeling with structural 
changes in the airway wall, including airway smooth mus-
cle cells (ASMCs) hyperplasia, extracellular matrix (ECM) 
production, and basement membrane thickening, is the 
primary clinical manifestation of asthma.2 Increased pro-
liferation of ASMCs results in obstruction and narrowing of 
airway,3 promotes accumulation of ECM and ultimately con-
tributes to airway remodeling.4 Therefore, ASMCs are con-
sidered as therapeutic target of asthma.2

Previous study demonstrated that transforming growth 
factor-β1 (TGF-β1) was elevated in the airway submucosa of 
asthmatic patients,5 especially the submucosal eosinophils.6 
Eosinophil recruitment was impaired in allergic asthma 
(importance of basophils in eosinophilic asthma: the murine 
counterpart). Accumulation of TGF-β1 in the activated eosin-
ophils contributed to the development of airway fibrosis in 
chronic asthma.7 TGF-β1 also suppressed cytokine secretion 
of group 2 innate lymphoid cells, and participated in cellular 
contact between regulatory T cells and lymphoid cells during 
allergic asthma and respiratory disease.8 TGF-β1 functions as 
a modulator of fibrotic response, and promotes the protein 
expression involved in ECM deposition.9 In addition, TGF-β1 
also increases the proliferation of ASMCs, thus driving airway 
remodeling.10 Inhibition of TGF-β1-induced ECM deposition and 
proliferation in ASMCs is beneficial to airway remodeling.11 

Dexmedetomidine (DEX) is an α2-adrenoceptor ago-
nist that exerts sedative and analgesic effects, and has 
been widely used in clinical anesthesia.12 Moreover, dex-
medetomidine also demonstrates protective effect on 
various organs. For example, dexmedetomidine amelio-
rated ischemia-reperfusion-induced renal13 or myocardial14 
injury through suppression of inflammatory response. 
Dexmedetomidine also protected against oxygen-glucose 
deprivation-induced cell apoptosis in cardiomyocytes15 
or autophagy in astrocytes.16 Lipopolysaccharide-induced 
neuronal apoptosis was repressed by dexmedetomidine.17 
Dexmedetomidine was also used in chronic obstructive 
pulmonary disease. For example, dexmedetomidine inhib-
ited the cell apoptosis of cigarette smoke extract-induced 
bronchial and alveolar epithelial cells, and suppressed 
inflammation and oxidative stress to attenuate cell injury.18 
Clinically, dexmedetomidine was used as adjuvant therapy 
in anxiety and agitation19 or acute respiratory failure20 in 
asthmatic patients. However, the mechanism of dexmede-
tomidine in asthma has not been reported yet. 

In this study, ASMCs were incubated with TGF-β1 
according to the method described in previous study,21 and 
the effects of dexmedetomidine were investigated on ECM 
production and proliferation. 

Materials and Methods

Cell culture and treatment

Human ASMCs (American Type Culture Collection, 
Manassas, VA, USA) were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM; Gibco, Rockville, MD, USA) con-
taining penicillin–streptomycin (Sigma-Aldrich, St. Louis, 
MO, USA) and 10% fetal bovine serum (Gibco). ASMCs 
were plated and incubated with 10-ng/mL TGF-β1 (Sigma-
Aldrich) for 48 h, and treated with different concentrations 
of dexmedetomidine (0.25, 0.5, and 1 nM) (Sigma-Aldrich) 
for another 24 h.

Cell viability, proliferation and apoptosis assays

TGF-β1-induced ASMCs post-dexmedetomidine condi-
tion was seeded in 96-well plate for 72 h, and incubated 
with MTT solution (Invitrogen, Carlsbad, CA, USA) for 4 
h. Absorbance at 570 nm was measured via microplate 
reader (Thermo Fisher Scientific, Waltham, MA, USA). 
For incorporation of bromodeoxyuridine (BrdU) positive 
cells, TGF-β1-induced ASMCs, post dexmedetomidine con-
dition, were incubated with 10-μM BrdU (Sigma-Aldrich) 
for 3 h. Cold ethanol/HCl-fixed cells were permeabilized 
in 0.25% Triton X-100, blocked with 1% bovine serum albu-
min (BSA), and incubated with anti-BrdU antibody and 
Alexa Fluor 594-conjugated secondary antibody from 
BrdU labeling and detection kit III (Roche Diagnostics 
GmbH, Mannheim, Germany). The nuclei were counter-
stained with DAPI. Cells were analyzed with cytometer 
(CompuCyte, Cambridge, MA, USA). For flow cytometry, 
TGF-β1-induced ASMCs post-dexmedetomidine condi-
tion were harvested, and resuspended in binding buffer 
from Annexin V-FITC/PI Apoptosis Detection Kit (Becton 
Dickinson Biosciences, San Jose, CA, USA). Cells were 
stained with propidium iodide (PI) and annexin V-FITC, 
and analyzed with FACSCalibur™ flow cytometer (Becton 
Dickinson Biosciences).

Western blot test

Protein samples were isolated from ASMCs cells using RIPA 
lysis buffer (Beyotime, Beijing, China). Samples were sep-
arated by 10% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE), and transferred onto nitro-
cellulose membranes. The membranes were blocked with 
skimmed milk and probed with specific antibodies: anti-
Bax (ab216494) and anti-Bcl-2 (ab59348) (1:2000; Abcam, 
Cambridge, UK); anti-cleaved caspase-3 (ab2302) and 
anti-cleaved caspase-9 (ab2324) (1:2500, Abcam); anti-fi-
bronectin (ab2413) and anti-collagen I (ab34710) (1:3000, 
Abcam); anti-MMP9 (ab38898) and anti-versican (ab19345) 
(1:3500, Abcam); anti-extracellular receptor kinase (ERK) 
(ab17942) and anti-phosphorylated (p)-ERK (ab278538) 
(1:4000, Abcam); and anti-Jun N-terminal kinase (JNK) 
(ab179461), anti-p-JNK (ab4821), anti-p38 (ab170099), anti-
p-p38 (ab4822), and anti-glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) (ab9485) (1:4500, Abcam). Following 
incubation with horseradish peroxidase-conjugated sec-
ondary antibody (ab205719; ab205718) (1:5000, Abcam) and 
tetramethylbenzidine, the protein bands were visualized 
using chemiluminescence (Sigma-Aldrich). The Quantity 
One software (Bio-Rad Laboratories Inc., Hercules, CA, 
USA) was used to quantify the protein bands with GAPDH 
as a reference. 
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Dexmedetomidine promoted cell apoptosis of  
TGF-β1-induced ASMCs

Cell apoptosis of ASMCs was significantly repressed by 
TGF-β1 condition (P < 0.01; Figure 2A), while dexmedeto-
midine promoted the apoptosis of TGF-β1-induced ASMCs 
in a dosage-dependent manner (Figure 2A). TGF-β1-induced 
increase in Bcl-2 expression and decrease in Bax-cleaved 
caspase-3 and cleaved caspase-9 expression in ASMCs were 
reversed by incubation of dexmedetomidine (Figure 2B), 
suggesting the pro-apoptotic role of dexmedetomidine in 
TGF-β1-induced ASMCs.

Dexmedetomidine repressed extracellular matrix 
production of TGF-β1-induced ASMCs

Protein expression levels of fibronectin, collagen I, MMP9, and 
versican were significantly up-regulated in ASMCs post-TGF-β1 
condition (P < 0.01; Figure 3). However, incubation of dex-
medetomidine reduced expression of fibronectin, collagen I, 
MMP9, and versican in TGF-β1-induced ASMCs in a dosage-de-
pendent manner (Figure 3), demonstrating that dexmedetomi-
dine protected ASMCs against TGF-β1-induced ECM deposition.

Statistical analysis

All the data with at least triple replicates were expressed 
as mean ± standard error of mean (SEM) and analyzed by 
Student’s t-test or one-way analysis of variance (ANOVA) 
with the SPSS software. P < 0.05 was considered as statis-
tically significant.

Results

Dexmedetomidine suppressed cell proliferation  
of TGF-β1-induced ASMCs

In order to establish asthmatic cell model, ASMCs were 
treated with TGF-β1. TGF-β1 significantly increased the 
cell viability of ASMCs (P < 0.01; Figure 1A), and promoted 
cell proliferation (P < 0.01; Figure 1B) through up-regula-
tion of BrdU positive cells (Figure 1C). Dexmedetomidine 
incubation reduced cell viability of TGF-β1-induced ASMCs 
in a dosage-dependent manner (Figure 1A), and repressed 
cell proliferation (Figures 1B and 1C). Therefore, dexme-
detomidine decreased proliferation of TGF-β1-induced 
ASMCs.
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Figure 1  Dexmedetomidine suppressed cell proliferation of TGF-β1-induced ASMCs. (A) Dexmedetomidine incubation reduced 
cell viability of TGF-β1-induced ASMCs measured by MTT assay. (B) Dexmedetomidine incubation repressed the cell proliferation of 
TGF-β1-induced ASMCs observed via reduction in BrdU positive cells captured by laser scanning cytometry. (C) Dexmedetomidine 
reduced the number of BrdU positive cells in TGF-B1-induced ASMCs in a dose-dependent manner. N = 3. Dunnett’s test was 
performed for statistical analysis. **vs. control, P < 0.01. &, &&vs. 0-nM dexmedetomidine (DEX), P < 0.05, P < 0.01.
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Figure 2  Dexmedetomidine promoted cell apoptosis of TGF-β1-induced ASMCs. (A) TGF-β1-induced ASMCs with or without 
dexmedetomidine treatment were incubated with 0.5 μL of Annexin-V-FITC for 10 min and 10 μL of propidium iodide (PI) (1 mg/mL) 
for 30 min and then analyzed by flow cytometry analysis. Results established that dexmedetomidine promoted cell apoptosis 
of TGF-β1-induced ASMCs. (B) Dexmedetomidine decreased Bcl-2 and increased Bax, cleaved caspase-3, and cleaved caspase-9 
normalized to GAPDH in TGF-β1-induced ASMCs. N = 3. Dunnett’s test was performed for the statistical analysis. **vs. control, P < 
0.01. &, &&vs. 0-nM dexmedetomidine (DEX), P < 0.05, P < 0.01.
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Figure 3  Dexmedetomidine repressed extracellular matrix (ECM) production of TGF-β1-induced ASMCs. Dexmedetomidine 
incubation reduced expression of fibronectin, collagen I, MMP9, and versican normalized to GAPDH in TGF-β1-induced ASMCs. 
N = 3. Dunnett’s test was performed for statistical analysis. **vs. control, P < 0.01. &, &&vs. 0-nM dexmedetomidine (DEX), P < 0.05, 
P < 0.01.

Dexmedetomidine repressed activation of 
mitogen-activated protein kinase (MAPK) signaling 
in TGF-β1-induced ASMCs

Although protein expression levels of JNK, ERK, and p38 
were not affected by TGF-β1 condition (Figure 4), p-JNK, 

p-ERK, and p-p38 were significantly up-regulated in TGF-β1-
induced ASMCs (P < 0.01; Figure 4). Moreover, incubation of 
dexmedetomidine decreased expression of p-JNK, p-ERK, 
and p-p38 in TGF-β1-induced ASMCs in a dosage-dependent 
manner (Figure 4), indicating the suppressive effect of dex-
medetomidine on MAPK signaling in TGF-β1-induced ASMCs.
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in ASMCs, thus promoting ECM deposition. Previous study 
has demonstrated the pro-apoptotic effect of dexmede-
tomidine on esophageal cancer cells.29 The components 
of ECM, including Tenascin C, matrix metallopeptidase 16, 
collagen IV, and fibronectin, were reduced in breast cancer 
cells by dexmedetomidine condition.30 Results in this study 
established that dexmedetomidine incubation suppressed 
cell proliferation of TGF-β1-induced ASMCs, promoted cell 
apoptosis, and reduced ECM deposition by down-regulating 
fibronectin, collagen I, MMP9, and versican. These results 
indicated that dexmedetomidine protected ASMCs against 
TGF-β1-induced ECM deposition and proliferation, thus alle-
viating airway remodeling in the development of asthma. 
However, TGF-β1 also contributes to airway remodeling 
through induction of ASMCs migration,31 and dexmedetomi-
dine suppressed the cell migration of esophageal cancer.29 
The effect of dexmedetomidine on the migration of TGF-β1-
induced ASMCs must be investigated in the future research.

Mitogen-activated protein kinase signaling cascades 
are responsible for migration, degranulation, proliferation, 
activation, and differentiation of ASMCs and immune cells, 
and modulate airway remodeling in the development of 
asthma.32 MAPKs are regarded as potential targets for the 
treatment of asthma.33 TGF-β1 has been demonstrated to 
induce activation of MAPK in ASMCs, thereby promoting the 
proliferation, migration, and ECM deposition of ASMCs.34 
Inhibition of MAPK prevented airway remodeling.35 Studies 
have proved that dexmedetomidine inhibited activation 
of MAPK signaling to protect against lidocaine-induced 
cytotoxicity,36 isoflurane-induced neuroapoptosis,37 and 
repressed ovarian cancer growth.38 Here, dexmedetomidine 
attenuated TGF-β1-induced increase in p-JNK, p-ERK, and 
p-p38 in ASMCs, thus inhibiting the activation of MAPKs.

Conclusion

The current study indicated that dexmedetomidine 
retarded airway remodeling in asthma through suppres-
sion of ECM deposition and proliferation in TGF-β1-induced 

Discussion

In the present study, our results demonstrated that dexme-
detomidine suppressed cell proliferation of TGF-β1-induced 
ASMCs, promoted cell apoptosis, and repressed production 
of ECM. Mechanistic study indicated that dexmedetomi-
dine repressed the activation of MAPK signaling in TGF-β1-
induced ASMCs.

Previous study has established that α2-adrenoceptors 
bind to endogenous or exogenous agonists to mediate var-
ious endocrine, behavioral, and physiological functions, 
thus implicating in the pathogenesis of various diseases, 
such as cognitive functions, endogenous depression, hyper-
tension, and anxiety.22 Antagonist of α2-adrenoceptor, 
midaglizole, was associated with bronchial hyperrespon-
siveness in patients with mild asthma.23 Dexmedetomidine 
functions as an α2-adrenoceptor agonist and repressed 
histamine-induced bronchoconstriction, thus benefiting in 
the decrease of airway reactivity in asthmatic patients.24 
Dexmedetomidine was administered to treat acute asthma 
(as an adjunctive treatment). Moreover, increasing evi-
dence has proved that TGF-β1, increased in asthma, mod-
ulated airway remodeling through promoting proliferation 
of ASMCs.25 The proliferative effect of TGF-β1 on ASMCs 
was first ascertained in this study as demonstrated by 
increased cell viability and proliferation of ASMCs after 
TGF-β1 treatment, and TGF-β1-repressed cell apoptosis of 
ASMCs. Dexmedetomidine has been reported to enhance 
expression of miR-21 and reduce expression of programmed 
cell death protein 4 to repress the development of abdom-
inal aortic aneurysm,26 and TGF-β1 up-regulated miR-181a 
to decrease phosphatase and tensin homologue deleted on 
chromosome ten (PTEN) in asthmatic mice.27 Therefore, 
dexmedetomidine might regulate miR-181a/PTEN to be 
implicated in the TGF-β1-induced ECM production and pro-
liferation of ASMCs.

TGF-β1 also promoted ECM production via activation 
of intracellular mediators, Smad proteins.28 In this study, 
our results demonstrated that TGF-β1 induced protein 
expression of fibronectin, collagen I, MMP9, and versican 
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Figure 4  Dexmedetomidine repressed activation of MAPK signaling in TGF-β1-induced ASMCs. Dexmedetomidine incubation 
decreased expression of p-JNK, p-ERK, and p-p38 normalized to GAPDH in TGF-β1-induced ASMCs. N = 3. Dunnett’s test was 
performed for the statistical analysis. **vs. control, P < 0.01. &, &&vs. 0-nM dexmedetomidine (DEX), P < 0.05, P < 0.01.
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