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Abstract
Background: Asthma is a chronic respiratory disease with complex pathogenesis. Some studies 
suggest that certain trace metals may be associated with asthma. However, the relationship 
between serum copper (Cu) and childhood asthma remains unclear. This meta-analysis evalu-
ates the association between Cu and childhood asthma.
Methods: Studies of multiple databases were searched from inception to 2024. We recorded 
the standardized mean difference (SMD), 95% confidence intervals (CIs), and other data. The 
analysis was performed using Stata 18.0 software. Two independent reviewers appraised 
methodological quality using the Newcastle–Ottawa Scale. Sensitivity analysis was used to 
test robustness. To evaluate publication bias, we used Begg’s funnel plots and Egger’s regres-
sion test.
Results: A total of 11 studies with a combined 1006 participants were included. There was 
no significant difference in the level of serum Cu between children with asthma cases and 
controls (SMD = −0.032, 95% CI: −0.291–0.228, P = 0.811). There was significant heterogeneity 
among the studies (I2 = 73.5%, P < 0.0001). Subgroup analysis demonstrated that heterogene-
ity was not caused by the continent of origin, publication year, sample size, detection meth-
ods, and the mean age of participants. No publication bias was found. 
Conclusion: There is no statistically significant association between serum Cu levels and child-
hood asthma. Further research, particularly large-scale prospective cohort studies, is needed 
to clarify this relationship.
© 2025 Codon Publications. Published by Codon Publications.
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Introduction

Asthma is a chronic respiratory disease affecting 1–29% 
of the world’s population.1 Incidence in children aged < 
5 years, 5–9 years, and 10–14 years are 1509.36, 980.25, 
and 586.95 per 100,000, respectively.2 Globally, asthma 
rates in children continue to rise; asthma affected 262 
million people in 2019.3 The Global Initiative for Asthma 
(GINA) describes this condition as wheezing, difficulty 
breathing, cough, chest tightness, and variable expiratory 
airflow limitation.1 The mechanisms of asthma are com-
plex, which is mainly related to genetic, immune, and 
environmental factors, and inflammatory response. With 
the industrial process development, environmental pol-
lution is constantly affecting human health, and a study 
suggesting that nutritional immunity also plays an import-
ant role in the function of lung immune cells.4 Trace ele-
ments such as zinc (Zn),5 nickel,6 cobalt,7 mercury,8 and 
iron9 have been proven to influence the pathogenesis of 
asthma. 

The balance of Zn homeostasis is crucial during infec-
tion, as it can prevent Zn from invading microorganisms 
and also ensure the function of immune cells.10 Zn defi-
ciency leads to a decrease in the phagocytic ability of 
macrophages and increase in caspase-3 activation and in 
apoptosis of bronchial epithelial cells, thereby exacer-
bating airway inflammation.11 Cellular Zn homeostasis is 
regulated by two families of Zn transporters: the solute 
carrier family 39A (SLC39A) importers and the SLC30A 
exporters.11 Long-term nickel exposure leads to more 
nickel accumulation, passing through the blood-brain and 
peritoneal barriers, induce inflammatory responses and 
oxidative stress, and cause cell apoptosis.12 Mercury tox-
icity increases the production of reactive oxygen species 
(ROS), triggers oxidative stress responses, and also causes 
immune dysfunction.13 A study based on the National 
Health and Nutrition Examination Survey (NHANES) data-
base shows that higher iron reserves were inversely asso-
ciated with asthma and that lower systemic iron was 
associated with lower lung function.14 In vitro macro-
phage iron loading assay showed that elevated iron levels 
promoted alternatively activated macrophages (M2) phe-
notype and inhibited lipopolysaccharide (LPS)-induced 
activated macrophage (M1) inflammation.15 Inflammation 
and immune imbalance play an important role in the 
development of asthma.

However, the role of copper (Cu) in asthma is unclear 
and controversial, as Cu not only exerts antioxidant 
effects and promotes tissue repair,16 but also activates 
mitogen-activated protein kinase (MAPK) or signal trans-
ducer and activator of transcription 6 (STAT6) signaling 
pathway, inducing oxidative stress and Th2 (Type 2 helper 
T cell)-mediated inflammation.17,18 Cu is vital to plants and 
animals, and the human body contains about 150 mg.19 
Various studies have shown that it may be associated with 
cancer,20 cardiovascular physiology and disease,21 infec-
tious diseases,22 and allergic disease.23 Cu strongly affects 
immunity and considered as a factor in asthma progres-
sion.24 It could influence the secretion of cytokines and 
take part in the involvement of development and differ-
entiation of immune cells.25 The level of Cu may affect 

the function of oxidation-antioxidant systems.26 Oxidative 
stress is an essential pathway to stimulate a respiratory 
disease like asthma.27

Some studies have revealed that both Cu deficiency 
and excess are associated with asthma; however, the 
association between the level of Cu and asthma and its 
mechanism require further investigation. In this study, we 
responded to this issue by performing a meta-analysis. The 
level of Cu may be a biomarker of the risk of childhood 
asthma. 

Materials and Methods

Design and protocol registration

This study was conducted based on the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guideline,28 and the protocol was registered in PROSPERO 
(ID: CRD42024505006).

Search strategy

We performed searches focusing on the association 
between serum Cu and childhood asthma in PubMed, Web 
of Science, Cochrane Library, Elsevier ScienceDirect, China 
National Knowledge Infrastructure, WANFANG Database, 
and China Science and Technology Journal Database from 
the building of database to 2024. The search terms used 
were: “copper” OR “cuprum” AND “asthma” OR “wheez-
ing” OR “lung function”. If the subjects were included in 
multiple studies, we included the most complete analy-
sis. We also found other studies by researching the refer-
ences. The search strategies for each database are shown 
in Table 1.

Inclusion and exclusion criteria

Studies were included if they met the following inclu-
sion criteria: (1) the subjects were under 18 years old; 
(2) “asthma” or “wheezing” that meets GINA’s diagnos-
tic criteria1; (3) the reported level of serum Cu; (4) the 
availability of mean ± standard deviation (SD); and (5) a 
case-control study, cross-sectional studies, or randomized 
controlled trials and cohort study.

Studies were excluded if they (1) were duplicates; 
(2) were case reports, letters, commentaries, conferences, 
reviews, meta-analyses, or animal experiments; (3) did not 
include groups with asthma or wheezing; (4) did not report 
the level of serum Cu; and (5) were irrelevant literature, 
which is not related to the topic of our study or the popu-
lation does not match.

Study selection

The study selection was independently conducted by two 
authors (Beilei Wang and Xingyue Su). Differences were 
settled by discussion.
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Table 1  Search strategies used for online databases.

Database Search strategies Records

PubMed (“Asthma” (MeSH Terms) OR “wheeze” (Title/Abstract) OR “wheezing” (Title/
Abstract) OR “lung function” (Title/Abstract) AND (“copper” (Title/Abstract) OR 
“cuprum” (Title/Abstract)

132

Web of Science AB = asthma OR wheeze OR wheezing OR lung function AND AB = copper OR cuprum 400
Cochrane Library Asthma OR wheeze OR wheezing OR lung function in Title/Abstract Keyword AND 

copper OR cuprum in Title/Abstract Keyword—Word variations have been searched
22

Elsevier ScienceDirect Title, abstract, keywords: asthma OR wheeze OR wheezing OR lung function AND 
copper OR cuprum

81

China National 
Knowledge Infrastructure

TS = asthma OR wheeze OR wheezing OR lung function AND TS = copper OR cuprum 5

WANFANG Database TS = asthma OR wheeze OR wheezing OR lung function AND TS = copper OR cuprum 535
China Science and 
Technology Journal 
Database

TS = asthma OR asthmatic OR intractable asthma OR wheeze OR wheezing OR lung 
function AND TS = copper OR cuprum

14

Relevant studies
identification through

database searching (n=1189)

Studies excluded (n=934):
1. clinical trial (n=27)

2. animal experiment (n=44)
3. case report (n=27)

4. letter, commentary, conference, review, meta-analysis (n=80)
5. irrelevant (n =756)

Studies excluded
1. adults (n=22)

2. without the level of serum copper (n=10)
3. data missing (n=12)

4. irrelevant (n= 14)

Studies after duplicates removed (n=1003)

Studies screened (n=1003)

Full-text studies assessed eligibility (n=69)

Studies included in meta-analysis (n=11)

Additional studies identified
through other sources (n=2)
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Figure 1  Flowchart of studies selection. n = the number of studies.

Data extraction 

The two authors independently read the articles and extracted 
the data. Author names, publication year, the number of 
asthma and controls, confounding factors (age, height, weight, 
and Body Mass Index [BMI]), area of the subjects, and method 
of tracing the serum Cu were extracted and collected.

Quality assessment

The Newcastle-Ottawa Scale (NOS) was used to assess the 
methodological quality and risk of bias of the included 
studies. The NOS comprises eight domains assessing meth-
odological quality, with each study receiving a summary 
score on a 9-point scale. Studies with a score of 7–9 were 
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considered high quality. Two independent authors per-
formed the quality assessment.

Statistical analysis

The standardized mean difference (SMD) and 95% confi-
dence intervals (CIs) were calculated using the Stata 18.0 
software. We assessed the association between the level 
of Cu (estimated by mean ± SD) with childhood asthma. 
The Q statistic was used to evaluate the heterogeneity 
of SMDs among studies. The I2 statistic was used to test 
inconsistencies between different studies. According to 
the continent of origin and the determination method, we 
carried out subgroups analysis. Publication bias was esti-
mated by Begg’s funnel plots and Egger’s regression test. 
We performed sensitivity analysis to evaluate the stability 
of included studies. 

Results

Study selection

We conducted research by using the search strategy in the 
database. The selection process is shown in Figure  1. A 
total of 1191 studies that met the inclusion criteria were 
obtained and excluded those based on the exclusion cri-
teria. A total of 1003 articles remained after deleting 
188 duplicate ones. After reading the title and abstract, 
934  studies were excluded, among which 27 were clin-
ical trials, 44 were animal experiment, 27 articles were 
case reports, and for other reasons as shown in Figure 1. 
Furthermore, 69 studies were fully read and 58 articles 
were removed. A total of 22 studies researched adults with 
asthma and 10 did not report the level of serum Cu. We 
could not find the data we needed from 12 studies that 
were excluded, and 14 were excluded because of irrele-
vance (not related to the topic of our study, the population 
does not match, etc.). Finally, 11 studies were included in 
the meta-analysis. 

Studies’ characteristics

Eventually, we included 11 studies published from 1987 to 
2024 involving 1006 children. The characteristics of the 
included studies are summarized in Table 2. Seven articles 
were from Asia, two from Europe, and two from Africa. The 
methods of tracing serum Cu differed. Seven studies were 
performed by atomic absorption spectroscopy (AAS), two 
by inductively coupled plasma mass spectrometry (ICP-MS), 
and one by proton-induced X-ray fluorescence technique 
(PIXE). Part of the studies was adjusted for age, gender, 
height, weight, and BMI.

Quality assessment

Each star represents 1 point. A score of 0–3 points equated 
to a low-quality study, 4–6 points to a moderate quality 
study, and 7–9 points required for a study to be given a 

score of high quality. The scoring system and the quality of 
the studies are shown in Table 3.

Association between serum Cu and childhood 
asthma

The combined SMDs of Cu between children with asthma 
cases and controls was −0.032 (95% CI: −0.291–0.228,  
P = 0.811) by using the random effects model (Figure 2). We 
used the Q test to evaluate the heterogeneity (I2 = 73.5%,  
P < 0.0001). The result was not statistically significant.

Subgroup analysis

Subgroup analysis was performed to estimate the signifi-
cant factors influencing the heterogeneity sources. For the 
serum Cu, the subgroup analysis results demonstrated that 
heterogeneity was not caused by the continent of origin, 
publication year, sample size, detection methods, and the 
mean age of participants (Figure 3). Because there were 
many missing data on height, weight, or BMI, there was no 
way to use BMI for subgroup analysis. 

Sensitivity analysis

To evaluate the stability of the included studies, we con-
ducted sensitivity analysis. When the method of one- 
by-one elimination was applied, the overall results did not 
change; these stable results provided credibility to our 
study (Figure 4).

Publication bias

Publication bias was estimated by Begg’s funnel plots and 
Egger’s regression test. The results of both methods indi-
cated no publication bias (Begg, P = 0.436; Egger, P = 0.980) 
(Figure 5).

Discussion

The mechanism of asthma is complex, and many factors 
such as genetic factors, environmental factors and immune 
regulation interact. The disturbance of trace elements is 
related to the onset of asthma.24 In this study, a meta-
analysis was conducted to investigate the association 
between serum Cu level and childhood asthma. There was 
no significant difference in the level of serum Cu between 
children with asthma cases and controls (SMD = −0.032, 95% 
CI: −0.291–0.228, P = 0.811).

The main pathophysiological features of asthma are 
airway inflammation, airway hyperresponsiveness, and air-
way remodeling. Cu exists in the human body in free form 
and also in the form of Cu-binding proteins. Cu exhibits 
dual roles in asthma pathogenesis and is a key cofactor 
for some antioxidant enzyme expression, such as Cu-Zn 
superoxide dismutase (Cu-Zn SOD), glutathione peroxidase, 
glutathione reductase, and so on. Cu-Zn SOD participates 
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Study

SMD (95% CI) Weight

%

7.47

7.50

9.36

8.48
11.59

10.94

9.03

7.37

7.54

9.51

11.19

100.00

0.53 (–0.10, 1.15)

–0.51 (–1.13, 0.11)

0.23 (–0.23, 0.68)

–0.82 (–1.36, –0.29)
0.17 (–0.10, 0.43)

0.28 (–0.04, 0.60)

–0.34 (–0.82, 0.15)

0.66 (0.02, 1.29)

0.45 (–0.17, 1.07)

–0.46 (–0.91, –0.02)

–0.37 (–0.68, –0.07)

–0.03 (–0.29, 0.23)

–1.36 1.360

ID

Di Toro et al 1987

Li et al 1995

Kocyigit et al 2004

Guo et al 2006

Peng et al 2007

Uysalol et al 2014

Oluwole et al 2014

Mohammad M et al 2016

Yalrc‚?n et al 2021

Podlecka et al 2022

Srivastava et al 2023

Overall (I-squared = 73.5%, p = 0.000)

NOTE: Weights are from random effects analysis

Figure 2  Differences in the level of serum Cu between asthma cases and controls. Note: The combined SMDs of Cu between 
children with asthma cases and controls was −0.032 (95% CI: −0.291–0.228, P = 0.811) by using the random effect model.

in redox reactions and used to convert the radical super-
oxide into molecular oxygen and hydrogen peroxide.16 
Ceruloplasmin (Cp) is the main carrier protein for Cu, act-
ing as a free radical scavenger and a component of anti-
oxidant defense.24 Therefore, Cu deficiency may lead to 
reduced antioxidant stress ability and exacerbate airway 
inflammation; however, Cu can increase the production of 
ROS.39 Excessive ROS production exceeds the ability to neu-
tralize the antioxidant defense system, leading to oxidative 
stress response.40 Oxidative stress plays an important role 
in promoting the development of asthma. Increased ROS 
can lead to direct oxidative damage of bronchial epithelial 
cells and also promote the release of cytokines and proin-
flammatory mediators, thereby increasing the secretion of 
mucus and causing airway inflammation.41 Cu can stimulate 
interleukin-6 (IL-6) production, a key regulator of specific 
markers of allergic airway inflammation, which may pro-
mote goblet cell hyperplasia and mucus secretion.42 Cu 
effects some classic pathways in asthma and can activate 
the MAPK signaling pathway.17,18 Cu may activate the trans-
forming growth factor-β1-mediated Smad pathway, which 
is related to airway remodeling,43 and also activates phos-
phatidylinositol 3-kinase (PI3K) and the PI3K-Akt (protein 
kinase  B) signal transduction pathway.44 Phosphorylated 
PI3K/Akt activates phospholipase C, leading to the phos-
phorylation and activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB).45,46

Some studies have pointed out that asthma is charac-
terized by a lower level of Cu than healthy subjects.23,32,34 

Children with asthma have an increased inflammatory 
response and oxidative stress.47 To resist this stress, trace 
elements are redistributed and then the liver accelerates 
the synthesis and release of Cp (ceruloplasmin), which may 
cause Cu to be consumed or redistributed. It also plays a 
role in the innate immune response to infections by reduc-
ing the survival of pathogens in host cells.48 Therefore, low 
Cu levels may be associated with increased susceptibility 
to infection, promoting airway inflammation.

On the contrary, most researchers have demon-
strated that an asthma group shows a higher Cu level 
than controls.49,50 High serum copper levels may aggravate 
asthma through several mechanisms. Gagliardo had found 
that in severe asthmatics, the NF-κB signaling pathway 
showed a greater activation status.51 Another study found 
a significantly increased Cu in uncontrolled asthma than in 
controls.52 In addition, excess Cu can induce programmed 
cell death through the mitochondrial pathway,53 leading 
to the shedding of airway epithelial cells and promoting 
inflammation; therefore, higher Cu levels may promote oxi-
dative stress and mediate airway inflammation, contribut-
ing to the aggravation of asthma.

In addition, some studies have suggested that serum Cu 
levels are not associated with asthma. A two-center study 
has evaluated participants with uncontrolled, partially 
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Figure 3  Subgroup analysis of the relationship between the level of Cu and the risk of asthma. (A) continent of origin,  
(B) publication year, (C) sample size, (D) detection methods, and (E) the mean age of participants. The subgroup analysis results 
demonstrated that heterogeneity was not caused by the continent of origin, publication year, sample size, detection methods, 
and the mean age of participants.

(A)

(C)

(E)

(B)

(D)

controlled, and controlled asthma according to GINA guide-
lines; results showed no significant differences in Cu levels 
between groups.38 A study from Toronto found no signifi-
cant association between Cu and the risk of asthma.54

Our analysis did not find significant differences in serum 
Cu levels between children with asthma and healthy con-
trols. There was high heterogeneity among the studies (I2 = 
73.5%, P < 0.0001). We explored multiple possible sources 

of heterogeneity in our subgroup analysis. However, it was 
found that variables such as continent of origin, publica-
tion year, sample size, detection methods, and the mean 
age of participants could not explain the main source of 
heterogeneity.

Owing to some missing data, such as weight and BMI, 
analysis of some subgroups could not be completed. Trace 
elements can be collected from hair, nail, urine, sputum, 
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Figure 4  Sensitivity analysis (A) and funnel plot (B) of included studies.
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Figure 5  The test for publication bias. (A) Egger’s regression test and (B) Begg’s funnel plots.

and others sources, but we researched only the serum. 
Moreover, different asthma subtypes may have different 
Cu metabolism characteristics, but we did not explore 
subtypes. In addition, asthma severity, atopic status, 
nutritional status, environmental exposures, or dietary 
Cu intake may also have an impact on serum Cu; however, 
due to the lack of effective data from the included liter-
ature, further research will be conducted in the future. 
Most of the studies we included were case-control studies 
with small sample sizes. Future large sample, multicenter, 
longitudinal cohort studies are needed to fully explore the 
association between serum Cu levels and the risk of child-
hood asthma. In the future, we can explore the correlation 
between different severity and different types of asthma 
and serum Cu levels. Perhaps genes involved in Cu metabo-
lism are also involved.

Conclusions

There is no statistically significant association between the 
level of serum Cu and childhood asthma. Subgroup analysis 
showed that the continent of origin, year of publication, 
sample size, assay methods, and mean age of participants 
were not major sources of heterogeneity. The relationship 
between Cu and asthma needs to be confirmed by prospec-
tive cohort studies with large samples.
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