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Abstract
In coronary microembolization, inflammatory cell infiltration, patchy necrosis, and extensive 
intra-myocardial hemorrhage are dominant, which induce myocardial dysfunction with clini-
cal symptoms of chronic ischemic cardiomyopathy. Microembolization can lead to obstruction 
of the coronary microvessels and result in the micro-infarction of the heart. The inflamma-
tion and elevated expression of the tumor necrosis factor in cardiomyocytes and the acti-
vation of extracellular ERK are involved in initiating the inflammatory response mechanism. 
The PI3K/Akt signaling pathway is the enriched pathway, and for controlling, inhibition of 
PI3K/Akt is necessary. Furthermore, the release of cytokines and the activation of inflam-
masomes contribute to the enhancement of vascular permeability, which results in edema 
within the myocardium. The immune response and inflammation represent the primary trig-
gers in this process. The ability to control immune response and inflammation reactions may 
lead to the development of new therapies for microembolization. 
© 2024 Codon Publications. Published by Codon Publications.
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Introduction

Autopsy studies in the 1980s, on sudden deaths due to 
coronary artery disease, presented fissure or rupture of 
epicardial coronary atherosclerotic plaques and coronary 
microcirculatory obstruction. The endothelial dysfunc-
tion is triggered by mediators such as thromboxane A2, 
thrombin, and serotonin, and causes cyclic flow variations 
due to the embolization of platelet aggregates into the 
microcirculation.1–4

The application of protection devices in percutaneous 
coronary intervention (PCI) enabled the retrieval of plaque 
debris, thrombotic material, and factors that are soluble 
and unable to be retrieved from graft coronary vessels. 
The increase in plaque erosion incidence was related to a 
quantitative shift from ST-segment elevation MI (STEMI) to 
non-STEMI (NSTEMI) over the past 25 years.5–9

Coronary microembolization (CME) is produced during 
ulceration and spontaneous plaque rupture, as well as 
coronary intervention. In CME, microscopic examination 
revealed inflammatory cell infiltration and patchy necrosis, 
but there was no transmural damage and intra-myocardial 
or extensive intra-myocardial hemorrhages. Effectively, 
CME can decrease coronary reserve and induce dysfunction 
of myocardia with clinical symptoms of chronic ischemic 
cardiomyopathy.10–13 Therefore, the early detection of CME-
induced ischemic lesions plays a major role in the prognosis 
and prediction of ischemic heart disease and micro-infarct 
of cardiac injury in suspected patients.14–16 

CME causes left ventricular systolic dysfunction that 
is usually local and subtle, and it also induces micro-
circulatory impairment, which can cause patchy micro-
infarction.10,17–20 The occurrence of CME is a spontaneous 
phenomenon in the context of acute coronary syndromes 
(ACS), and it is also a potential consequence of percutane-
ous coronary interventions. The typical CME consequences 
include micro-infarcts’ formation, inflammatory responses, 
contractile dysfunction, and reduction in coronary reserve. 
Mechanical stress, from interventional manipulation of epi-
cardial coronary atherosclerotic plaques or hemodynamic 
perturbations with inflammatory destabilization, releases 
thrombotic material, particulate debris, and other sub-
stances that are soluble in the coronary circulation.21–28 

The physical substance impedes the coronary microcir-
culation, while the soluble substance induces endothelium 
dysfunction and facilitates vasoconstriction. Blocking and 
dysfunction of the coronary microvascular result in patchy 
micro-infarcts accompanied by an immunoinflammatory 
reaction, both contributing to progressive dysfunction 
of the myocardial contractile. Distal protection devices 
have the potential to retrieve atherothrombotic debris 
and also, prevent embolization into the microcirculation. 
Nevertheless, their impact on clinical outcomes has been 
underwhelming, except for saphenous vein bypass grafts. 
The use of devices for the aspiration of thrombus-derived 
vasoconstrictors and thrombi, and immune-thrombogenic 
and inflammatory substances has been demonstrated to 
decrease the thrombus burden, provide protection, and 
improve perfusion in patients with acute MI.29–34 In this 
review, we focus on the features and mechanisms of CME 
and discuss immunopathology and related mechanisms of 
coronary microembolization.

Microembolization and Cardiac Function

The function of the global left ventricle (LV) is contingent 
upon the size and number of embolizing particles, as well 
as the size of the affected coronary perfusion territory. 
The response may range from transient and subtle LV dys-
function to severe cardiogenic shock.35,36 In CME animal 
models, CT and MRI demonstrated not only a reduction in 
global and regional contractile function but also defects 
of patchy perfusion, edema, and micro-infarcts.37,38–41 The 
clinical shape of coronary microembolization is unspecific. 
The elevation of biomarkers, such as troponin (a notable 
phenomenon, particularly when employing high-sensitivity 
assays) or creatine kinase, indicates myocardial injury but 
lacks specificity.42,43 

Transient elevations in serum levels of CK, its isoen-
zyme CK-MB, and troponin I or T following PCI are indica-
tive of periprocedural myocardial injury.44,45 The biomarker 
release magnitude depends on the clinical conditions of the 
patient (patients with chronic kidney disease or diabetes 
mellitus), the content of the vessel undergoing PCI (SVGs or 
native coronary arteries), and the type of procedure (the 
rot-ablation or simple stenting). The difference between 
primary and elective PCI in terms of resultant CME is sim-
ply the spontaneous versus iatrogenic nature of its origin 
in the culprit lesion.46–54 Future investigations and thera-
pies should prioritize elucidating the interaction between 
inflammatory reactions and platelet aggregation at the 
epicardial culprit lesion and in the CME. Further analyses 
of coronary aspirate or trans-coronary gradients from ACS 
patients could provide additional insights into the patho-
physiological mechanisms of CME and facilitate the devel-
opment of targeted therapies.

Microembolization and Inflammation Signals

Microembolization can lead to the obstruction of coro-
nary vessels and results in micro-infarction of the heart. 
Nevertheless, the apoptosis contribution to cell death from 
micro-infarction is relatively minor in comparison to that 
from necrosis. The obstruction resulting in micro-infarct is 
characterized by a profound inflammatory reaction, which 
leads to pyroptotic cell death.55,56 The presence of edema, 
macrophage, and neutrophil infiltration is observed in the 
vicinity of the micro-infarct site. The inflammatory reac-
tion is continued by enhanced expression of TNF in cardio-
myocytes and macrophages, as well as iNOS.57–65

The activation of extracellular ERK1 and ERK2 plays a 
pivotal role in initiating the inflammatory response. The 
presence of inflammation around micro-infarcts is asso-
ciated with an increase in IGF1 mRNA expression in infil-
trating monocytes. This increase represents a potential 
start signal for the promotion of collateral growth and the 
angiogenic response, as observed in a long-term model 
of CME.66,67 

Among the inflammatory mediators, TNF exerts a 
particularly detrimental effect on the microembolized 
myocardium, exerting negative inotropic effects.61,62,65 In 
anesthetized animals, NO is formed with increased TNF 
upstream, while sphingosine is synthesized with increased 
TNF downstream. The ultimate effect of inflammatory 
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signal transduction appears to be the enhanced formation 
of ROS, oxidative modification of contractile myofibrils, 
and a reduction in Ca2

+ responsiveness of the contractile 
machinery.68–70 In coronary microembolization, these path-
ways can lead to apoptosis via activation of caspase 3 and 
9 in myocardium.71

The CANTOS trial presented the IL-1β pathogenetic role 
in previous MI patients and increased plasma concentrations 
of the CRP.72 The antagonism (in long-term) of IL-6 and IL-1β 
can stabilize epicardial atherosclerotic plaques and also 
inhibit their eventual erosion and/or rupture. In the con-
text of an interventional procedure for a stable or acute 
coronary syndrome, in which CME can occur and an anti-in-
flammatory reaction in the CME may be important, the ben-
efit of IL-receptor antagonists and other anti-inflammatory 
agents is less clear.73,74 IL-6 inhibition not only stabilizes ath-
erosclerotic plaques but also attenuates the downstream 
effects of inflammation and platelet aggregation.75

Immunopathogenesis of Coronary 
Microembolization 

The pathogenic mechanisms and immunopathology of cor-
onary disease are complex. The PI3K/Akt signaling pathway 
and platelet activation are the enriched pathways, and 
pathways such as PI3K/Akt are necessary for the control 
and inhibition of inflammatory reactions and apoptosis in 
the cardiovascular direction. The inflammatory media-
tors, activated platelets, and exposed damaged endothe-
lium interact with one another, resulting in impaired local 
microcirculation within the coronary artery. This, in turn, 
leads to the formation of thrombi. A high level of IL-6 is 
detectable in intracoronary aspirated platelet-leukocyte 
mixtures obtained from patients with PCI which sig-
nals an inflammatory storm as a result of the intervening 
operation.76–78 

In “platelet-inflammation-microthrombosis,” inhibition 
of platelet adhesion and the inflammatory state can 
improve cardiac function. Leukocytes and platelets aggre-
gate to form a bridge between leukocytes and endothelial 
cells, mediated by P-selectin activation. This process, also 
known as “immunothrombosis,” exacerbates local embo-
lism in the coronary artery. Furthermore, the regulation of 
integrin conformation via the PI3K/Akt pathway has been 
demonstrated to attenuate sodium laurate–induced cor-
onary thrombosis. Cardiac dysfunction, as evidenced by 
the sodium laurate–induced coronary microthrombosis, is 
cumulative, manifesting as subtle alterations of the left 
ventricular function and severe cardiogenic shock.79–83

CD62p is a marker of thrombus formation and plate-
let activation, and Ca2

+ serves as the crucial second mes-
senger in cellular processes. The αIIbβ3 is an important 
membrane protein present on the platelets, which binds 
to RGD-containing ligands such as fibrin, von Willebrand 
factor (vWF), and fibrinogen, ultimately cross-linking the 
platelets to form tight fibrin–platelet thrombi. The αIIbβ3 
activation spreads into a high-affinity conformation from 
the extracellular structural domain that is referred to as 
an “inside-out” signal. Subsequently, the sites of αIIbβ3-
exposed receptor initiate an “outside-in” positive feed-
back pathway, which causes irreversible clot stabilization 

and retraction. This process is influenced by the PI3K/AKT 
pathway. Moreover, the vWF acts as an adhesion molecule 
that enhances the binding of αIIbβ3 to fibrinogen and pro-
motes the formation of more stable platelet aggregates.84–89

The morphology of platelet cytoskeleton is a significant 
indicator of their activation status. The platelet cytoskele-
ton is composed of two actin filament-based components: 
(a) the cytoplasmic actin filaments, responsible for medi-
ating contractile events and filling the cytoplasm; (b) the 
membrane skeleton, which coats the plasma membrane and 
helps regulate its properties including its contours and sta-
bility. Upon activation, platelets undergo a rapid increase 
in actin polymerization, with new filaments rapidly filling 
extended filamentous pseudopods and forming a network at 
the periphery of the platelets. The PI3K/Akt pathway is the 
most important one for αIIbβ3 (ITGB3/ITGA2B) and platelet 
activation. Upon stimulation of the vWF receptor GPIb-IX-V, 
the PI3Kβ stimulates Akt phosphorylation. The simulation of 
G protein-coupled receptors activates ITGB3/ITGA2B, which 
in turn triggers phospholipase and calcium and release 
regulatory pathways. In the context of the PI3K/Akt path-
way-mediated activation of thrombocytes, the PI3K family 
of enzymes phosphorylate phospholipase enzymes at the 3′ 
position of the inositol ring, specifically generating 1,4,5-tri-
sphosphatidylinositol phospholipids (PIP3). The Akt family of 
protein kinases plays a pivotal role in the PIP3–PI3K signal-
ing cascade, functioning as a major binding protein. PIP33–5 
recruits the pH domain-containing kinases PDK1 and Akt to 
the membrane where PDK1 phosphorylates Akt on Thr308 
in the T-loop. On the other hand, Akt is phosphorylated by 
mTORC2 on Ser473, which results in maximal Akt activity. 
The three isoforms of Akt (1–3) play an important role in 
platelet aggregation and thrombus stabilization.90–97

Myocardial Infarction and Coronary  
Adhesion Molecules

Coronary endothelial cells exhibit relative resistance to 
ischemia and are capable of surviving hypoxia in vitro 
for extended periods. However, in vivo, the interruption 
of antegrade pulsatile flow and shear stress leads to the 
induction of endothelial cell swelling and blebbing.98–100 The 
reperfused endothelium exhibits altered calcium homeo-
stasis, which increases cytosolic calcium. This, in turn, 
activates the endothelial contractile elements, thereby 
promoting the formation of intercellular gaps and increasing 
permeability to large molecules. The expression of adhe-
sion molecules by activated platelets and endothelial cells 
results in the adhesion of platelets and platelet–leukocyte 
aggregates to the coronary microvasculature.101,102

Moreover, the release of cytokines impairs the stabil-
ity of cell junctions and enhances vascular permeability. 
This occurs via the activation of Src and the dissociation 
of the VEGFR2/vascular endothelial (VE)–cadherin com-
plex.103,104 Activation of the NLRP3 inflammasome in endo-
thelial cells can result in caspase 1-mediated cell death. 
Endothelium-initiated inflammation, in conjunction with 
debris from cardiomyocyte necrosis, exerts proinflamma-
tory effects, which result in the recruitment of inflam-
matory cells and the release of proinflammatory factors, 
including VEGF, thrombin, matrix metalloproteases, PAF, 
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and myeloperoxidase.105–109 These factors increase vascular 
permeability, which results in edema of the myocardium 
via various mechanisms, including the activation of endo-
thelial NO synthase (eNOS) in caveolae by VEGF.110,111 

In cardiomyocytes, the reversal of intracellular edema 
is facilitated by the restoration of ion pump activation, 
particularly that of the sarcolemmal Na+/K+-ATPase. 
During ischemia, the accumulation of metabolites elevates 
interstitial osmolality. Exposure to normal osmotic blood at 
reperfusion induces immediate interstitial edema.112,113

Disseminated Intravascular Coagulation and 
Immune Responses

Disseminated intravascular coagulation (DIC) is a common 
occurrence in critical diseases. It represents the activation 
of the tissue factor pathway, cascade, and deposition of 
platelet–fibrin thrombi in the microvasculature.114,115 The 
hypercoagulability observed in DIC is further compounded 
by the presence of several other factors, including dehy-
dration, hypoxia, and relative immobility, which are com-
monly observed in critical conditions. Several pathogenic 
mechanisms have been identified that may contribute to 
the development of DIC (Figure 1).116,117

In infection-associated coagulopathy, the inflammatory 
response and innate immune activation are the primary 
drivers. It is presumed that coagulation and fibrin deposi-
tion are adaptive in the early phase of infection. However, 
continued inflammation results in a deleterious hyperin-
flammatory response mediated by a cytokine storm, and 
also macrophage activation syndrome. A cytokine storm is 

defined as an auto-amplifying proinflammatory cytokine 
release that significantly contributes to multiorgan dys-
function syndrome.118–121 Macrophage activation syndrome is 
a related proinflammatory cascade that is associated with 
a high incidence of thrombosis and mortality (Figure 2).122,123 

Numerous proinflammatory cytokines are increased 
including TNF-α and IL-6, IL-2R, IL-10, and IL-8 
(Figure  1).124,125 There is an association between elevated 
levels of IL-6 and fibrinogen.126 During infections, mono-
nuclear cells express high levels of procoagulant genes 
including tissue factor, serpins, fibrinogen, and Factors 
II and X that are related to immune-mediated thrombo-
sis and induce hypercoagulability.127,128 These cells also 
express genes TLR-9 and thromboxane synthase that pro-
mote endothelial dysfunction, platelet activation and 
aggregation, and vasoconstriction.129 

The activation of complement cascade recruits and 
activates leukocytes, which leads to greatly amplified local 
secretion of the proinflammatory cytokines and subsequent 
microvascular damage. The complement system inhibition 
ameliorates coagulopathy and endothelial dysfunction in 
sepsis.130,131 

Conclusions and Remaining Questions

CME is a prevalent phenomenon in ischemic heart disease, 
occurring spontaneously in patients with typical conse-
quences such as contractile dysfunction and malignant 
arrhythmias. Several studies have indicated that CME may 
be a potential cause of dysfunction of the regional myocar-
dial contractile, which is related to immuno-inflammatory 
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Figure 1  Proinflammatory cytokines, mediators, and cells, related to disseminated intravascular coagulation.
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reactions, coagulation thrombi with embolization into the 
coronary microcirculation, and also, lethal arrhythmias.132–135

The pathological observations found CME as the com-
mon cause of death from ischemic heart disease. The 
microemboli are associated with an inflammatory reaction 
and micro-infarcts. CME also can induce a marked inflam-
matory reaction, which is characterized by infiltration of 
eosinophils, and mulitifocal micro-infarcts.136–138 CME is 
associated with the development of patchy micro-infarcts, 
which affect approximately 2% of the respective myocar-
dium. Some of the cardiomyocytes may undergo apoptosis, 
which is associated with the micro-infarcts and character-
ized by leukocyte infiltration. Conversely, elevated myo-
cardial TNF-α levels are linked to contractile impairment 
following CME and result in dysfunction when exogenous 
TNF-α is infused directly into the coronary artery, even in 
the absence of microembolization.60,139 TNF-α is found  in 
leukocytes that have infiltrated the area surrounding and 
within micro-infarcts. Additionally, it is present in car-
diomyocytes in the viable border zone surrounding the 
micro-infarcts. The concentration of TNF-α and sphin-
gosine in the myocardium is increased by microemboliza-
tion. Pretreatment with NO-synthase inhibitor attenuates 
the progressive myocardial contractile dysfunction.68,140,141 
Here, a signal cascade of TNF-α, NO, and sphingosine is 
identified and associated with CME (Figure 1). Immune 
response and inflammation are the key triggers of CME, 
and CME in turn triggers immune response initiation and 
inflammation reactions.142–144 Further experimental stud-
ies are also required to elucidate the specific immune 
response and therapeutic targets for the treatment of CME 
and its consequences.
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